Advertisement

Study of friction stir butt welding between thin plates of AA5754 and mild steel for automotive applications

  • P. N. KarakizisEmail author
  • D. I. Pantelis
  • D. A. Dragatogiannis
  • V. D. Bougiouri
  • C. A. Charitidis
ORIGINAL ARTICLE

Abstract

In the present study, the feasibility of joining 2 mm thick plates of AA5754-H114 to mild steel was examined. Sound friction stir dissimilar butt welding was achieved between thin plates of the automotive grade 5754 aluminum alloy and mild steel for the first time. Moderate rotational speed and a rather slow traverse speed were used. The mechanical properties of the weld were close to the equivalent of the aluminum base metal and a rise in the microhardness of the weld nugget of around 40% compared to the equivalent of the mild steel base metal was presented. An interdiffusion layer with a width of around 5 μm was created at the interface of the two alloys, the extended width of which probably affects positively the mechanical properties of the welds.

Keywords

Friction stir welding Dissimilar welding Mild steel AA5754 Microstructure Mechanical behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the European Commission for their support on the H2020 project “Low Cost Materials Processing Technologies for Mass Production of Lightweight Vehicles (LoCoMaTech),” Grant No: H2020-NMBP- GV-2016 (723517).

References

  1. 1.
    Dawes CJ, Thomas WM (1996) Friction stir process welds aluminum alloys. Weld J 75(3):41–45Google Scholar
  2. 2.
    Golezani AS, Barenji RV, Heidarzadeh A, Pouraliakbar H (2015) Elucidating of tool rotational speed in friction stir welding of 7020-T6 aluminum alloy. Int J Adv Manuf Technol 81(5–8):1155–1164CrossRefGoogle Scholar
  3. 3.
    Charitidis CA, Dragatogiannis DA, Koumoulos EP, Kartsonakis IA (2012) Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation. Mater Sci Eng A 540:226–234CrossRefGoogle Scholar
  4. 4.
    Koumoulos EP, Charitidis CA, Daniolos NM, Pantelis DI (2011) Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Mater Sci Eng B 176(19):1585–1589CrossRefGoogle Scholar
  5. 5.
    Daniolos NM, Pantelis DI (2017) Microstructural and mechanical properties of dissimilar friction stir welds between AA6082-T6 and AA7075-T651. Int J Adv Manuf Technol 88(9–12):2497–2505CrossRefGoogle Scholar
  6. 6.
    Leitão C, Louro R, Rodrigues DM (2012) Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and AA6082-T6. Mater Des 37:402–409CrossRefGoogle Scholar
  7. 7.
    Heidarzadeh A, Pouraliakbar H, Mahdavi S, Jandaghi MR (2018) Ceramic nanoparticles addition in pure copper plate: FSP approach, microstructure evolution and texture study using EBSD. Ceram Int 44(3):3128–3133CrossRefGoogle Scholar
  8. 8.
    Dragatogiannis DA, Koumoulos EP, Kartsonakis I, Pantelis DI, Karakizis PN, Charitidis CA (2016) Dissimilar friction stir welding between 5083 and 6082 Al alloys reinforced with TiC nanoparticles. Mater Manuf Process 31(16):2101–2114CrossRefGoogle Scholar
  9. 9.
    Pantelis DI, Karakizis PN, Daniolos NM, Charitidis CA, Koumoulos EP, Dragatogiannis DA (2016) Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater Manuf Process 31(3):264–274CrossRefGoogle Scholar
  10. 10.
    Pantelis DI, Karakizis PN, Dragatogiannis DA, Charitidis CA (2015) Dissimilar friction stir welding of aluminum alloys reinforced with carbon nanotubes. In: Charitidis CA (ed) Nanomaterials in joining, 1st edn. de Gruyter, Berlin, pp 23–52Google Scholar
  11. 11.
    Amirafshar A, Pouraliakbar H (2015) Effect of tool pin design on the microstructural evolutions and tribological characteristics of friction stir processed structural steel. Measurement 68:1–336CrossRefGoogle Scholar
  12. 12.
    Uzun H, Donne CD, Argagnotto A, Ghidini T, Gambaro C (2005) Friction stir welding of dissimilar Al 6013- T4 to X5CrNi18-10 stainless steel. Mater Des 26:41–46CrossRefGoogle Scholar
  13. 13.
    Jiang WH, Kovacevic R (2004) Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel. Proc Inst Mech Eng B J Eng Manuf 218(10):1323–1331.  https://doi.org/10.1243/0954405042323612 CrossRefGoogle Scholar
  14. 14.
    Watanabe T, Takayama H, Yanagisawa A (2006) Joining of aluminum alloy to steel by friction stir welding. J Mater Process Technol 178:342–349CrossRefGoogle Scholar
  15. 15.
    Tanaka T, Morishige T, Hirata T (2009) Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scr Mater 61:756–759CrossRefGoogle Scholar
  16. 16.
    Sajin GS, Manish M, Pankaj, Srinivas P, Dey SR (2013) Friction stir welding of aluminum 6082 with mild steel and its joint analyses. Conference Paper Advanced Materials International Journal Of Advanced Materials Manufacturing and Characterization (3)1, 3:189–193Google Scholar
  17. 17.
    Thomä M, Wagner G, Straß B, Wolter B, Benfer S, Fürbeth W (2018) Ultrasound enhanced friction stir welding of aluminum and steel: process and properties of EN AW 6061/DC04-Joints. Mater Sci Technol 34(1):163–172.  https://doi.org/10.1016/j.jmst.2017.10.022 CrossRefGoogle Scholar
  18. 18.
    Tang J, Shen Y (2017) Effects of preheating treatment on temperature distribution and material flow of aluminum alloy and steel friction stir welds. J Manuf Process 29:29–40CrossRefGoogle Scholar
  19. 19.
    Jandaghi MR, Pouraliakbar H, Khalaj G, Khalaj M-J, Heidarzadeh A (2016) Study on the post-rolling direction of severely plastic deformed aluminum-manganese-silicon alloy. Arch Civil Mech Eng 16:876–887CrossRefGoogle Scholar
  20. 20.
    Jandaghi MR, Pouraliakbar H (2017) Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed aluminum-manganese-silicon alloy. Mater Sci and Eng: A 679:493–503CrossRefGoogle Scholar
  21. 21.
    Pouraliakbar H, Jandaghi MR, Khalaj G (2017) Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Mater and Des 124:34–46CrossRefGoogle Scholar
  22. 22.
    Pouraliakbar H, Jandaghi MR, Heidarzadeh A, Jandaghi MM (2018) Constrained groove pressing, cold-rolling, and post-deformation isothermal annealing: consequences of their synergy on material behavior. Mater Chem Phys 206:85–93CrossRefGoogle Scholar
  23. 23.
    Khorrami MS, Mostafaei MA, Pouraliakbar H, Kokabi AH (2014) Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints. Mater Sci and Eng: A 608:35–45CrossRefGoogle Scholar
  24. 24.
    Cabibbo M, Forcellese A, Simoncini M, Pieralisi M, Ciccarelli D (2016) Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints. Mater Des 93:146–159CrossRefGoogle Scholar
  25. 25.
    Gabrielli F, Forcellese A, El Mehtedi M, Simoncini M (2017) Mechanical properties and formability of cold rolled friction stir welded sheets in AA5754 for automotive applications. Procedia Eng 183:245–250CrossRefGoogle Scholar
  26. 26.
    Halim H, Wilkinson DS, Niewczas M (2007) The Portevin–Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater 55:4151–4160CrossRefGoogle Scholar
  27. 27.
    Silva ACF, De Backer J, Bolmsjö G (2017) Temperature measurements during friction stir welding. Int J Adv Manuf Technol 88(9–12):2899–2908CrossRefGoogle Scholar
  28. 28.
    McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding=processing of aluminum alloys. Scr Mater 58(5):349–354CrossRefGoogle Scholar
  29. 29.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar
  30. 30.
    Bahrami M, Dehghani K, Kazem Besharati Givi M (2014) A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Mater Des 53:217–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • P. N. Karakizis
    • 1
    Email author
  • D. I. Pantelis
    • 1
  • D. A. Dragatogiannis
    • 2
  • V. D. Bougiouri
    • 1
  • C. A. Charitidis
    • 2
  1. 1.Shipbuilding Technology Laboratory, School of Naval Architecture and Marine EngineeringNational Technical University of AthensAthensGreece
  2. 2.Laboratory Unit of Nanomechanics and Nanoengineering, School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations