Advertisement

Assembly sequence plan generation of heavy machines based on the stability criterion

  • Akram Bedeoui
  • Riadh Ben Hadj
  • Moncef Hammadi
  • Moez Trigui
  • Nizar AifaouiEmail author
ORIGINAL ARTICLE

Abstract

The Assembly or Disassembly Sequence Planning (ASP/DSP) remains an actual optimization problem in the manufacturing industry. It has represented a great deal of interest over the past three decades. Furthermore, given the complexity of today’s mechanisms, an optimal ASP/DSP can reduce the design costs and minimize the maintenance time of industrial equipment. Among the least used criteria in ASP/DSP generation, the stability criterion seems to be quite interesting especially for heavy mechanisms. This paper proposes an approach to generate feasible ASP based on the components’ stability during the assembly operations. The generation of feasible ASP was guaranteed using the geometrical and topological assembly constraints extracted from the CAD assembly. An example of a heavy machine is adopted to highlight the advantages of the proposed approach.

Keywords

Feasible ASP CAD model Heavy machine Stability Contact matrix Gravity center 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Gottipolu RB, Ghosh K (1995) Integrated approach to the generation of assembly sequences. Int J Comput Appl Technol 8:125–138Google Scholar
  2. 2.
    Alfadhlani, Ari Samadhi TMA, Ma'Ruf A, Toha IS (2011) Automatic collision detection for assembly sequence planning using a three-dimensional solid model. J Adv Manuf Syst 10:277–291CrossRefGoogle Scholar
  3. 3.
    Ou LM, Xu X (2013) Relationship matrix based automatic assembly sequence generation from a CAD model. Comput Aided Des 45(1):1053–1067CrossRefGoogle Scholar
  4. 4.
    Iacob R, Popescu D, Carutasu N (2013) Development of assembly/disassembly process simulation platform. Proc Manuf Syst 8:15–24Google Scholar
  5. 5.
    Viganò R, Gómez GO (2013) Automatic assembly sequence exploration without precedence definition. Int J Interact Des Manuf 7:79–89CrossRefGoogle Scholar
  6. 6.
    Ben Hadj R, Trigui M, Aifaoui N (2015) Toward an integrated CAD assembly sequence planning solution. J Mech Eng Sci Part C 229(16):2987–3001CrossRefGoogle Scholar
  7. 7.
    Ben Hadj R., Trigui M., Aifaoui N. (2015), “Integrated CAD approach for generating assembly sequence plans based on collision study results”, Proceedings of the Sixth Conference on Design and Modeling of Mechanical Systems, CMSM '2015, March 23–25, Hammamet, TunisiaGoogle Scholar
  8. 8.
    Pintzos G, Triantafyllou C, Papakostas N, Mourtzis D, Chryssolouris G (2016) Assembly precedence diagram generation through assembly tiers determination. Int J Comput Integr Manuf 29(10):1045–1057CrossRefGoogle Scholar
  9. 9.
    Trigui M, Belhadj I, Benamara A (2016) Disassembly plan approach based on subassembly concept. Int J Adv Manuf Technol 90(1–4):219–231Google Scholar
  10. 10.
    Belhadj I, Trigui M, Benamara A (2016) Subassembly generation algorithm from a CAD model. Int J Adv Manuf Technol 87(9–12):2829–2840CrossRefGoogle Scholar
  11. 11.
    Su Q (2007) Computer aided geometric feasible assembly sequence planning and optimizing. Int J Adv Manuf Technol 33:48–57CrossRefGoogle Scholar
  12. 12.
    Liu X, Liu Y, Xu B (2013) A converse method-based approach for assembly sequence planning with assembly tool. Int J Adv Manuf Technol 69:1359–1371CrossRefGoogle Scholar
  13. 13.
    Hyoung RL, Gemmill DD (2001) Improved methods of assembly sequence determination for automatic assembly systems. Eur J Oper Res 131(3):611–621zbMATHCrossRefGoogle Scholar
  14. 14.
    Chen SF, Liu YJ (2001) An adaptive genetic assembly-sequence planner. Int J Comput Integr Manuf 14(5):489–500CrossRefGoogle Scholar
  15. 15.
    Kheder M, Trigui M, Aifaoui N (2015) Disassembly sequence planning based on a genetic algorithm. J Mech Eng Sci Part C 229(12):2281–2290CrossRefGoogle Scholar
  16. 16.
    Tseng H-E, Chang C-C, Lee S-C, Huang Y-M (2018) A blockbased genetic algorithm for disassembly sequence planning. Expert Syst Appl 96:492–505CrossRefGoogle Scholar
  17. 17.
    Yu J, Wang C (2013) A max–min ant colony system for assembly sequence planning. Int J Adv ManufTechnol 67:2819–2835CrossRefGoogle Scholar
  18. 18.
    Huang W, Qinchao X (2017) Automatic generation and optimization of stable assembly sequence based on ACO algorithm. In: IEEE International Conference on Mechatronics and Automation (ICMA). August, Takamatsu, Japan, pp 6–9Google Scholar
  19. 19.
    Suszyński M, Żurek J (2015) Computer aided assembly sequence generation. Manag Prod Eng Rev 6(3):83–87Google Scholar
  20. 20.
    Makris S, Pintzos G, Rentzos L, Chryssolouris G (2013) Assembly support using AR technology based on automatic sequence generation. CIRP Ann-Manuf Technol 62(1):9–12CrossRefGoogle Scholar
  21. 21.
    Laperriere L, Lavoie A (1997) Evaluating subassembly stability using stability directed subgraphs. Int J Comput Appl Technol 10(5/6):348–360Google Scholar
  22. 22.
    Smith SSF, Smith GC, Liao X (2001) Automatic stable assembly sequence generation and evaluation. J Manuf Syst 20(4):225–235CrossRefGoogle Scholar
  23. 23.
    Bahubalendruni MV, Biswal BB (2016) Computer aid for stability testing between parts towards automatic assembly sequence generation. J Comput Technol Appl 7(1):22–26Google Scholar
  24. 24.
    Kumar M, Bahubalendruni MV, Biswal BB, Nayak R (2016) Identification of stable configurations between constituent parts of an assembly. Appl Mech Mater 852:595–601Google Scholar
  25. 25.
    Murali GB, Deepak BBVL, Bahubalendruni MV, Biswal BB (2017) Optimal assembly sequence planning using hybridized immune-simulated annealing technique. ICAAMM-2016 Mater Today: Proceed 4:8313–8322Google Scholar
  26. 26.
    Balberde JA, Blaise JC, Bonnaud C, Jacquel C, Lannurien JF (2017) Prévention des risques en maintenance, 1st ed INRS ED 6270. Caisse d’assurance retraite et de la santé au travail, ParisGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Akram Bedeoui
    • 1
  • Riadh Ben Hadj
    • 1
  • Moncef Hammadi
    • 2
  • Moez Trigui
    • 1
  • Nizar Aifaoui
    • 1
    Email author
  1. 1.Mechanical Engineering Laboratory, National Engineering School of Monastir (LGM_ENIM)University of MonastirMonastirTunisia
  2. 2.Quartz EA7393, SUPMECASaint-OuenFrance

Personalised recommendations