Advertisement

Interval type-2 fuzzy logic systems optimized by central composite design to create a simplified fuzzy rule base in image processing for quality control application

  • Gerardo Maximiliano Méndez
  • Pascual Noradino Montes DorantesEmail author
  • Adriana Mexicano Santoyo
ORIGINAL ARTICLE

Abstract

A novel method that uses a Mandami interval singleton type-2 fuzzy logic system (IT2 SFLS) with the support of the central composite design (CCD) technique and the classic approach of composed base inference (CBI) is made to enhance the modeling and the construction of the fuzzy rule base. The IT2 SFLS has the potential to outperform the singleton type-1 fuzzy logic systems (T1 SFLS). The IT2 SFLS systems accounts for the uncertainties that can be added during the system modeling and construction: the uncertain rules created using noisy data. There is no way to take into account this uncertainty in the antecedent and consequent membership functions of a singleton type-1 fuzzy logic systems. Due to this uncertainty, an additional process is required to filter the measured data, but the uncertainty is still present in the structure of the T1 system. The main goal of the proposed model is to enhance the performance obtained in the dimensional features evaluation in a quality assurance process of the manufacturing of product parts. The experiments developed in a real facility show that the application of the proposed method produced better results than that obtained by the T1 SFLS benchmarking system.

Keywords

IT2 FLS Interval type-2 fuzzy logic Image processing Artificial vision CCD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Gomes JFS, Leta FR (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989–1000Google Scholar
  2. 2.
    Carlotto MJ (2007) Detecting change in images with parallax. In Defense and Security Symposium. International Society for Optics and Photonics, pp 656719–656719Google Scholar
  3. 3.
    Davies ER (2009) The application of machine vision to food and agriculture: a review. Imaging Sci J 57(4):197–217Google Scholar
  4. 4.
    Demant C, Demant C, Streicher-Abel B (1999) Industrial image processing. Springer-Verlag, BerlinGoogle Scholar
  5. 5.
    González Lillo R (2011) Entendiendo la exposición en Fotografía (1ª parte). http://www.guioteca.com/fotografia/entendiendo-la-exposicion-en-fotografia-1%C2%AA-parte/
  6. 6.
    Taylor BN (2009) Guidelines for evaluating and expressing the uncertainty of nist measurement results (rev. DIANE Publishing)Google Scholar
  7. 7.
    Mouzouris GC, Mendel JM (1997) Dynamic non-singleton fuzzy logic systems for nonlinear modeling. IEEE Trans Fuzzy Syst 5(2):199–208Google Scholar
  8. 8.
    Melin P, Castillo O (2013) A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst Appl 40(13):5413–5423Google Scholar
  9. 9.
    Jeon G, Anisetti M, Bellandi V, Damiani E, Jeong J (2009) Designing of a type-2 fuzzy logic filter for improving edge-preserving restoration of interlaced-to-progressive conversion. Inf Sci 179(13):2194–2207Google Scholar
  10. 10.
    Melin P, Mendoza O, Castillo O (2010) An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst Appl 37(12):8527–8535Google Scholar
  11. 11.
    Melin P, Mendoza O, Castillo O (2011) Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks. IEEE Trans Syst Man Cybern A 41(5):1001–1012Google Scholar
  12. 12.
    Mendoza O, Melín P, Castillo O (2009) Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl Soft Comput 9(4):1377–1387Google Scholar
  13. 13.
    Mendoza O, Melin P, Licea G (2009) A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the sugeno integral. Inf Sci 179(13):2078–2101Google Scholar
  14. 14.
    Melin P, Castillo O (2007) An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inf Sci 177(7):1543–1557Google Scholar
  15. 15.
    Chua TW, Tan WW (2011) Non-singleton genetic fuzzy logic system for arrhythmias classification. Eng Appl Artif Intell 24(2):251–259Google Scholar
  16. 16.
    Papakostas GA, Boutalis YS, Koulouriotis DE, Mertzios BG (2008) Fuzzy cognitive maps for pattern recognition applications. Int J Pattern Recognit Artif Intell 22(08):1461–1486Google Scholar
  17. 17.
    Sahab N, Hagras H (2011) Adaptive non-singleton type-2 fuzzy logic systems: a way forward for handling numerical uncertainties in real world applications. Int J Comput Commun 5(3):503–529Google Scholar
  18. 18.
    Choi BI, Rhee FCH (2009) Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf Sci 179(13):2102–2122zbMATHGoogle Scholar
  19. 19.
    Ghasemi MJ, Tajozzakerin HR, Omidian AR (2010) An iranian national number plate localization and recognition system for private vehicles. Int J Acad Res 2(6):13–19Google Scholar
  20. 20.
    Mendez GM (2007) Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP. In Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Springer, Berlin Heidelberg, pp 36–44Google Scholar
  21. 21.
    Castillo O, Melin P (2012) Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf Sci 205:1–19Google Scholar
  22. 22.
    Tahmasebi P, Hezarkhani A (2012) A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Comput Geosci 42:18–27Google Scholar
  23. 23.
    Martínez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179(13):2158–2174zbMATHGoogle Scholar
  24. 24.
    Melin P, Sánchez D, Castillo O (2012) Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf Sci 197:1–19Google Scholar
  25. 25.
    Mendel JM (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  26. 26.
    Buragohain M, Mahanta C (2008) A novel approach for ANFIS modelling based on full factorial design. Appl Soft Comput 8(1):609–625Google Scholar
  27. 27.
    Praga-Alejo R, González GD, Pérez VP, Cantú SM, Flores HB (2012) Modeling a fuzzy logic system using central composite design. In proceedings of 1st annual world conference of the Society for Industrial and Systems Engineering. Washington DC, USAGoogle Scholar
  28. 28.
    Montes Dorantes PN, Praga-Alejo R, Nieto Gonzalez JP, Méndez GM (2013) Modelado de sistemas adaptativos de inferencia neuro-difusa usando diseño central compuesto. Res Comput Sci 62:259–269Google Scholar
  29. 29.
    Montes Dorantes PN, Nieto González JP, Praga-Alejo R, Guajardo Cosio KL, Méndez GM (2014) Sistema inteligente para procesamiento de imágenes en control de calidad basado en el modelo difuso singleton tipo 1. Res Comput Sci 74:117–130Google Scholar
  30. 30.
    Dorantes M, Noradino P, Nieto Gonzalez JP, Mendez GM (2014) Fault detection systems via a novel hybrid methodology for fuzzy logic systems based on individual base inference and statistical process control. Latin America Transactions, IEEE (Rev IEEE Am Lat) 12(4):706–712Google Scholar
  31. 31.
    Makadia AJ, Nanavati JI (2013) Optimisation of machining parameters for turning operations based on response surface methodology. Measurement 46(4):1521–1529Google Scholar
  32. 32.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353zbMATHGoogle Scholar
  33. 33.
    Benneyan JC (1998) Use and interpretation of statistical quality control charts. Int J Qual Health Care 10(1):69–73Google Scholar
  34. 34.
    Zarandi MF, Alaeddini A, Turksen IB (2008) A hybrid fuzzy adaptive sampling–run rules for Shewhart control charts. Inf Sci 178(4):1152–1170Google Scholar
  35. 35.
    Senturk S, Erginel N (2009) Development of fuzzy and control charts using α-cuts. Inf Sci 179(10):1542–1551Google Scholar
  36. 36.
    Gülbay M, Kahraman C (2007) An alternative approach to fuzzy control charts: direct fuzzy approach. Inf Sci 177(6):1463–1480zbMATHGoogle Scholar
  37. 37.
    Dongale TD, Kulkarni TG, Kadam PA, Mudholkar RR (2012) Simplified method for compiling rule base matrix. Int J Soft Comp Engg 2(1):39–43Google Scholar
  38. 38.
    Macvicarwhelan P (1978) Fuzzy sets, concept of height, and hedge very. IEEE Trans Syst Man Cybern 8(6):507–511Google Scholar
  39. 39.
    Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  40. 40.
    Montgomery DC (2004) Diseño y Análisis de experimentos. Limusa-Wiley, HobokenGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Gerardo Maximiliano Méndez
    • 1
  • Pascual Noradino Montes Dorantes
    • 2
    • 3
    Email author
  • Adriana Mexicano Santoyo
    • 3
  1. 1.Instituto Tecnológico de Nuevo LeónGuadalupeMexico
  2. 2.División de estudios de posgrado e investigaciónUniversidad Autónoma del NoresteSaltilloMexico
  3. 3.División de estudios de posgrado e investigaciónInstituto Tecnológico de Ciudad VictoriaCiudad VictoriaMexico

Personalised recommendations