A review on dissimilar metals’ welding methods and mechanisms with interlayer

  • Yongjian Fang
  • Xiaosong JiangEmail author
  • Defeng Mo
  • Degui Zhu
  • Zhiping Luo


The study of dissimilar metals’ welding is an important issue due to their increasing applications in many industrial fields. Welding of dissimilar metals is challenging because of the formation of large residual stress and brittle intermetallic compounds (IMCs). In order to solve this problem, intermediate interlayers were used to eliminate or inhibit the formation of brittle intermetallic reaction layers in many welding techniques, such as diffusion bonding, laser welding, electron beam welding, and other welding techniques. The aim of this paper is to review the recent progress of dissimilar metals’ welding methods and mechanisms with interlayer to offer a basis for the following research. The work discussed several criteria for the selection of interlayer, such as physical properties, metallurgical compatibility, mode, and thickness of the interlayer. Then, formation enthalpy, Gibbs energy of formation (ΔG), and brittleness of the IMCs, as well as welding parameters, were also discussed. Simultaneously, the present work had proposed a design guideline for the selection of interlayer in dissimilar metals’ welding to acquire a welded joint with good quality.


Dissimilar metals Welding Intermetallic compounds Interlayer Mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work was financially supported by Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (No. IIMDKFJJ-17-06), Sichuan Science and Technology Support Program (No. 2016FZ0079), National Natural Science Foundation of China (No. 51201143), China Postdoctoral Science Foundation (No. 2015M570794, No. 2018T110993), and R&D Projects Funding from the Research Council of Norway (No. 263875/H30).


  1. 1.
    Satoh G, Yao YL, Qiu C (2013) Strength and microstructure of laser fusion-welded Ti-SS dissimilar material pair. Int J Adv Manuf Technol 66:469–479CrossRefGoogle Scholar
  2. 2.
    Chen Y, Chen S, Li L (2010) Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing. Mater Des 31(1):227–233CrossRefGoogle Scholar
  3. 3.
    Zhu Z, Kang YL, Wang X (2012) Ultrasonic welding of dissimilar metals, AA6061 and Ti6Al4V. Int J Adv Manuf Technol 59(5-8):569–574CrossRefGoogle Scholar
  4. 4.
    Yu W, Zhao H, Huang Z, Chen X, Aman Y, Li S, Zhai H, Guo Z, Xiong S (2017) Microstructure evolution and bonding mechanism of Ti2SnC-Ti6Al4V joint by using Cu pure foil interlayer. Mater Charact 127:53–59CrossRefGoogle Scholar
  5. 5.
    Torun O, Çelikyürek I, Gürler R (2008) Diffusion bonding of iron aluminide Fe72Al28 using a copper interlayer. Mater Charact 59(7):852–856CrossRefGoogle Scholar
  6. 6.
    KuangB B, Shen YF, Chen WH (2015) The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with “pinless” tool configuration. Mater Des 68:54–62CrossRefGoogle Scholar
  7. 7.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mat Sci Eng R50(1–2):1–78Google Scholar
  8. 8.
    Hossain MAM, Hasan MT, Hong ST, Miles M, Cho HH, Han HN (2014) Mechanical behaviors of friction stir spot welded joints of dissimilar ferrous alloys under opening-dominant combined loads. Adv Mater Sci Eng 2014(1):1–12CrossRefGoogle Scholar
  9. 9.
    Liu L, Ren D, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials 7(5):3735–3757CrossRefGoogle Scholar
  10. 10.
    Peyre P, Berthe L, Dal M, Pouzet S, Sallamand P, Tomashchuk I (2014) Generation and characterization of T40/A5754 interfaces with lasers. J Mater Process Technol 214(9):1946–1953CrossRefGoogle Scholar
  11. 11.
    Li L, Tan C, Chen Y, Guo W, Song F (2013) Comparative study on microstructure and mechanical properties of laser welded-brazed Mg/mild steel and Mg/stainless steel joints. Mater Des 43(43):59–65CrossRefGoogle Scholar
  12. 12.
    Sufizadeh AR, Mousavi SAAA (2016) Metallurgical and mechanical research on dissimilar Electron beam welding of AISI 316L and AISI 4340. Adv Mater Sci Eng 2016(6):1–11CrossRefGoogle Scholar
  13. 13.
    Kaur A, Ribton C, Balachandaran W (2015) Electron beam characterisation methods and devices for welding equipment. J Mater Process Technol 22:225–232CrossRefGoogle Scholar
  14. 14.
    Sun Z, Karppi R (1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Technol 59(3):257–267CrossRefGoogle Scholar
  15. 15.
    Barreda JL, Azpiroz X, Irisarri AM (2010) Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments. Vacuum 85(1):10–15CrossRefGoogle Scholar
  16. 16.
    Liu F, Ren DX, Liu LM (2013) Effect of Al foils interlayer on microstructures and mechanical properties of Mg-Al butt joints welded by gas tungsten arc welding filling with Zn filler metal. Mater Des 46(4):419–425CrossRefGoogle Scholar
  17. 17.
    Winnicki M, Matachowska A, Korzeniowski M, Jasiorski M, Baszczuk A (2018) Aluminium to steel resistance spot welding with cold sprayed interlayer. Surf Eng 34(3):235–242CrossRefGoogle Scholar
  18. 18.
    Pardal G, Ganguly S, Williams S (2016) Dissimilar metal joining of stainless steel and titanium using copper as transition metal. Int J Adv Manuf Technol 86(5-8):1139–1150CrossRefGoogle Scholar
  19. 19.
    Rajeev GP, Kamaraj M, Bakshi SR (2017) Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surf Coat Technol 326:63–71CrossRefGoogle Scholar
  20. 20.
    Choi JW, Liu HH, Fujii H (2018) Dissimilar friction stir welding of pure Ti and pure Al. Mat Sci Eng A 730:168–176CrossRefGoogle Scholar
  21. 21.
    Prasanthi TN, Sudha C, Ravikirana, Saroja S, Naveen Kumar N, Janaki Ram GD (2015) Friction welding of mild steel and titanium: optimization of process parameters and evolution of interface microstructure. Mater Des 88(3):58–68CrossRefGoogle Scholar
  22. 22.
    Li P, Li JL, Salman M, Liang L, Xiong JT, Zhang FS (2014) Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints. Mater Des 56(4):649–656CrossRefGoogle Scholar
  23. 23.
    Gao Y, Nakata K, Nagatsuka K, Liu FC, Liao J (2015) Interface microstructural control by probe length adjustment in friction stir welding of titanium and steel lap joint. Mater Des 65:17–23CrossRefGoogle Scholar
  24. 24.
    Norouzi E, Shamanian M, Atapour M, Khosravi B (2017) Diffusion brazing of Ti–6Al–4V and AISI 304: an EBSD study and mechanical properties. J Mater Sci 52:12467–12475CrossRefGoogle Scholar
  25. 25.
    Wang FL, Sheng GM, Deng YQ (2016) Impulse pressuring diffusion bonding of titanium to304 stainless steel using pure Ni interlayer. Rare Met 35(4):331–336CrossRefGoogle Scholar
  26. 26.
    Miranda RM, Assunção E, Silva RJC, Oliveira JP, Quintino L (2015) Fiber laser welding of NiTi to Ti-6Al-4V. Int J Adv Manuf Technol 81(9–12):1533–1538CrossRefGoogle Scholar
  27. 27.
    Venkata KA, Truman CE, Coules HE, Warren AD (2017) Applying electron backscattering diffraction to macroscopic residual stress characterisation in a dissimilar weld. J Mater Process Technol 241:54–63CrossRefGoogle Scholar
  28. 28.
    Wang T, Zhang BG, Chen GQ, Feng JC, Tang Q (2010) Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet. Trans Nonferr Metal Soc 20(10):1829–1834CrossRefGoogle Scholar
  29. 29.
    Kundu S, Bhola SM, Mishra B, Chatterjee S (2014) Structure and properties of solid state diffusion bonding of 17-4PH stainless steel and titanium. Mater Sci Tech-Lond 30(2):248–256CrossRefGoogle Scholar
  30. 30.
    Velmurugan C, Senthilkumar V, Sarala S, Arivarasan J (2016) Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel. J Mater Process Technol 234:272–279CrossRefGoogle Scholar
  31. 31.
    Mansor MSM, Yusof F, Ariga T, Miyashita Y (2018) Microstructure and mechanical properties of micro-resistance spot welding between stainless steel 316L and Ti-6Al-4V. Int J Adv Manuf Technol 96:2567–2581CrossRefGoogle Scholar
  32. 32.
    Ferrante M, Pigoretti EV (2002) Diffusion bonding of Ti-6Al-4V to AISI 316L stainless steel: mechanical resistance and interface microstructure. J Mater Sci 37(13):2825–2833CrossRefGoogle Scholar
  33. 33.
    Chen SH, Zhang MX, Huang JH, Cui CJ, Zhang H, Zhao XK (2014) Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater Des 53(1):504–511CrossRefGoogle Scholar
  34. 34.
    Choi DH, Ahn BW, Lee CY, Yeon YM, Song K, Jung SB (2011) Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding. Intermetallics 19(2):125–130CrossRefGoogle Scholar
  35. 35.
    Chowdhury SH, Chen DL, Bhole SD, Cao X, Wanjara P (2012) Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys. Mater Sci Eng A556(11):500–509CrossRefGoogle Scholar
  36. 36.
    Yue YM, Zhang Z, Ji SD, Li ZW, Yan DJ (2018) Friction stir lap welding of 6061-T6 Al to Ti-6Al-4V using low rotating speed. Int J Adv Manuf Technol 96:2285–2291CrossRefGoogle Scholar
  37. 37.
    Chen SH, Yang DW, Li M, Zhang YH, Huang JH, Yang J, Zhao XK (2016) Laser penetration welding of an overlap titanium-aluminum configuration. Int J Adv Manuf Techol 87(9–12):3069–3079CrossRefGoogle Scholar
  38. 38.
    Guo S, Zhou Q, Peng Y, Xu XF, Diao CL, Kong J, Luo TY, Wang KH, Zhu J (2017) Study on strengthening mechanism of Ti/Cu electron beam welding. Mater Des 121:51–60CrossRefGoogle Scholar
  39. 39.
    Gao M, Mei SW, Wang ZM, Li XY, Zeng XY (2012) Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci Technol Weld Join 17(4):269–276CrossRefGoogle Scholar
  40. 40.
    Tomashchuk I, Sallamand P, Andrzejewski H, Grevey D (2011) The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd:YAG laser joints. Intermetallics 19(10):1466–1473CrossRefGoogle Scholar
  41. 41.
    Wang XY, Sun DQ, Sun Y (2016) Influence of Cu-interlayer thickness on microstructures and mechanical properties of MIG-welded Mg-steel joints. J Mater Eng Perform 25(3):910–920CrossRefGoogle Scholar
  42. 42.
    Ning J, Zhang LJ, Jiang GC, Xie MX, Yin XQ, Zhang JX (2017) Narrow gap multi-pass laser butt welding of explosion welded CP-Ti/Q235B bimetallic sheet by using a copper interlayer. J Alloy Compd 701:587–602CrossRefGoogle Scholar
  43. 43.
    Özdemir N, Bilgin B (2009) Interfacial properties of diffusion bonded Ti-6Al-4V to AISI 304 stainless steel by inserting a cu interlayer. Int J Adv Manuf Technol 41(5-6):519–526CrossRefGoogle Scholar
  44. 44.
    Aboudi D, Lebaili S, Taouinet M, Zollinger J (2017) Microstructure evolution of diffusion welded 304L/Zircaloy4with copper interlayer. Mater Des 116:386–394CrossRefGoogle Scholar
  45. 45.
    Zoeram S, Mousavi SAAA (2014) Laser welding of Ti-6Al-4V to Nitinol. Mater Des 61:185–190CrossRefGoogle Scholar
  46. 46.
    Yıldız A, Kaya Y, Kahraman N (2016) Joint properties and microstructure of diffusion-bonded grade 2 titanium to AISI 430 ferritic stainless steel using pure Ni interlayer. Int J Adv Manuf Technol 86(5–8):1287–1298CrossRefGoogle Scholar
  47. 47.
    Gan RG, Jin YH (2018) Friction stir-induced brazing of Al/Mg lap joints with and without Zn interlayer. Sci Technol Weld Join 23(2):164–171CrossRefGoogle Scholar
  48. 48.
    Chu QL, Zhang M, Li JH, Yan C, Qin ZL (2017) Influence of vanadium filler on the properties of titanium and steelTIG-welded joints. J Mater Process Technol 240:293–304CrossRefGoogle Scholar
  49. 49.
    Oliveira JP, Panton B, Zeng Z, Andrei CM, Zhou Y, Miranda RM, BrazFernandes FM (2016) Laser joining of NiTi to Ti6Al4V using a niobium interlayer. Acta Mater 105:9–15CrossRefGoogle Scholar
  50. 50.
    Balasubramanian M (2015) Application of Box-Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding. Mater Des 77:161–169CrossRefGoogle Scholar
  51. 51.
    Wang D, Wang H, Cui HC, He G (2016) Enhancement of the laser welded AA6061-carbon steel joints by using Al5Si intermediate layer. J Mater Process Technol 237(1):277–285CrossRefGoogle Scholar
  52. 52.
    Ibrahim I, Ito R, Kakiuchi T, Uematsu Y, Yun K, Matsuda C (2016) Fatigue behavior of Al/steel dissimilar resistance spot welds fabricated using Al-Mg interlayer. Sci Technol Weld Join 21(3):223–233CrossRefGoogle Scholar
  53. 53.
    Dai XY, Zhang HT, Zhang HC, Liu JH, Feng JC (2016) Joining of magnesium and aluminum via arc-assisted ultrasonic seam welding with Sn/Zn composite interlayer. Mater Lett 178:235–238CrossRefGoogle Scholar
  54. 54.
    Yang JL, Xue SB, Wu YY, Yu CN, Sekulic DP (2018) Wetting behaviour of Zn-Al filler metal on a stainless steel substrate. Sci Technol Weld Join 23(1):1–6CrossRefGoogle Scholar
  55. 55.
    Song TF, Jiang XS, Shao ZY, Fang YJ, Mo DF, Zhu DG, Zhu MH (2017) Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti-6Al-4V titanium alloy and 316L stainless steel using Cu/Nb multi-interlayer. Vacuum 145:68–76CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Huang J, Cheng Z, Ye Z, Chi H, Peng L, Chen SH (2016) Study on MIG-TIG double-sided arc welding-brazing of aluminum and stainless steel. Mater Lett 172:146–148CrossRefGoogle Scholar
  57. 57.
    Deng YQ, Sheng GM, Yin LJ (2015) Impulse pressuring diffusion bonding of titanium to stainless steel using a copper interlayer. Rare Metal Mat Eng 44(5):1041–1045CrossRefGoogle Scholar
  58. 58.
    Mitelea I, Groza C, Craciunescu C (2013) Copper interlayer contribution on Nd:YAGlaser welding of dissimilar Ti-6Al-4V alloy with X5CrNi18–10 steel. J Mater Eng Perform 22(8):2219–2223CrossRefGoogle Scholar
  59. 59.
    Tomashchuk I, Sallamand P, Belyavina N, Pilloz M (2013) Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer. Mat Sci Eng A 585:114–122CrossRefGoogle Scholar
  60. 60.
    Wang T, Zhang BG, Wang HQ, Feng JC (2014) Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals. J Mater Eng Perform 23(4):1498–1504CrossRefGoogle Scholar
  61. 61.
    Aceves SM, Espinosa-Loza F, Elmer JW, Huber R (2017) Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage. Int J Hydrogen Energy 40(3):1490–1503CrossRefGoogle Scholar
  62. 62.
    Dai X, Zhang H, Zhang H, Liu J, Feng J (2016) Arc assisted ultrasonicseam welding of Mg/Al joints with Zn interlayer. Mater Sci Tech-Lond 32(2):164–172CrossRefGoogle Scholar
  63. 63.
    Sun M, Niknejad ST, Zhang G, Lee MK, Wu L, Zhou Y (2015) Microstructure and mechanical properties of resistance spot welded AZ31/AA5754 using a nickel interlayer. Mater Des 87:905–913CrossRefGoogle Scholar
  64. 64.
    Wang T, Zhang BG, Wang GQ, Feng JC (2013) High strength electron beam welded titanium stainless steel joint with V/Cu based composite filler metals. Vacuum 94(6):41–47CrossRefGoogle Scholar
  65. 65.
    Chu QL, Zhang M, Li JH, Jin Q, Fan QY, Xie WW, Luo HL, Bi ZY (2015) Experimental investigation of explosion-welded CP-Ti/Q345 bimetallicsheet filled with Cu/V based flux-cored wire. Mater Des 67:606–614CrossRefGoogle Scholar
  66. 66.
    Mali VI, Bataev AA, Maliutina IN, Kurguzov VD, Bataev IA, Esikov MA, Lozhkin VS (2017) Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding. Int J Adv Manuf Technol 93(9–12):4285–4294CrossRefGoogle Scholar
  67. 67.
    Tashi RS, Mousavi SAAA, Atabaki MM (2014) Diffusion brazing of Ti-6Al-4V and austenitic stainless steel using silver-based interlayer. Mater Des 54:161–167CrossRefGoogle Scholar
  68. 68.
    Sam S, Kundu S, Chatterjee S (2012) Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: interface microstructure and strength properties. Mater Des 40:237–244CrossRefGoogle Scholar
  69. 69.
    Tan CW, Chen B, Meng SH, Zhang KP, Song XG, Zhou L, Feng JC (2016) Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler. Mater Des 99:127–134CrossRefGoogle Scholar
  70. 70.
    Wang P, Hu SS, Shen JQ, Liang Y (2017) Microstructure and mechanical behaviour of cold metal transfer welded Mg/Aldissimilar joint using wire AZ31 as filler metal. Sci Technol Weld Join 22(4):353–361CrossRefGoogle Scholar
  71. 71.
    Wang T, Li XP, Zhang YY (2017) Regulating the interfacial morphology of electron beam welded pure Ti/2024Al dissimilar joint. J Mater Process Technol 245:227–231CrossRefGoogle Scholar
  72. 72.
    Liu F, Wang H, Liu L (2014) Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal. Mater Charact 90(4):1–6Google Scholar
  73. 73.
    Wang H, Liu L, Liu F (2013) The characterization investigation of laser-arc-adhesive hybrid welding of Mg to Al joint using Ni interlayer. Mater Des 50(17):463–466CrossRefGoogle Scholar
  74. 74.
    Lee MK, Lee JG, Choi YH, Kim DW, Rhee CK, Lee YB, Hong SJ (2010) Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett 64:1105–1108CrossRefGoogle Scholar
  75. 75.
    Bakker H (1998) Enthalpies in alloys, Miedema’s semi-empirical model. Trans tech publications 1998:1–78Google Scholar
  76. 76.
    Zhang RF, Liu BX (2002) Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl Phys Lett 81(7):1219–1221CrossRefGoogle Scholar
  77. 77.
    Zhang RF, Rajan K (2014) Statistically based assessment of formation enthalpy for intermetallic compounds. Chem Phys Lett 612:177–181CrossRefGoogle Scholar
  78. 78.
    Kattner UR, Boettinger WJ (1992) Thermodynamic calculation of the ternary Ti-Al-Nb system. Mat Sci Eng A 152:9–17CrossRefGoogle Scholar
  79. 79.
    Liang H, Chen SL, Chang YAA (1997) Thermodynamic description of the Al-Mg-Zn system. Metall Mater Trans A 28:1725–1734CrossRefGoogle Scholar
  80. 80.
    Shah LH, Gerlich A, Zhou Y (2018) Design guideline for intermetallic compound mitigation in Al-Mgdissimilar welding through addition of interlayer. Int J Adv Manuf Technol 94:2667–2678CrossRefGoogle Scholar
  81. 81.
    Chen HY, Luo LM, Zhang J, Zan X, Zhu XY, Luo GN, Wu YC (2015) Investigation on W/Fe diffusion bonding using Ti foil and Ti powder interlayer by sps. J Nucl Mater 467:566–571CrossRefGoogle Scholar
  82. 82.
    Baghjari SH, Ghaini FM, Shahverdi HR (2016) Laser welding of niobium to 410 steel with a nickel interlayer produced by electro spark deposition. Mater Des 107:108–116CrossRefGoogle Scholar
  83. 83.
    Cheepu M, Ashfaq M, Muthupandi V (2017) A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel. T Indian I Metals 70(10):2591–2600CrossRefGoogle Scholar
  84. 84.
    Sun M, Niknejad ST, Gao H, Wu L, Zhou Y (2016) Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Mater Des 91:331–339CrossRefGoogle Scholar
  85. 85.
    Xu RZ, Ni DR, Yang Q, Liu CZ, Ma ZY (2017) Influence of Zn coating on friction stir spot welded magnesium-aluminum joint. Sci Technol Weld Join 22(6):512–519CrossRefGoogle Scholar
  86. 86.
    Gao Y, Morisada Y, Fujii H, Liao J (2018) Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer. Mater Sci Eng A 711(10):109–118CrossRefGoogle Scholar
  87. 87.
    Li HM, Sun DQ, Gu XY, Dong P, Lv ZP (2013) Effects of the thickness of Cu filler metal on the microstructure and properties of laser-welded TiNi alloy and stainless steel joint. Mater Des 50(17):342–350CrossRefGoogle Scholar
  88. 88.
    Gao Q, Wang KH (2016) Influence of Zn interlayer on interfacial microstructure and mechanical properties of TIG lap-welded Mg/Al joints. J Mater Eng Perform 25(3):756–763MathSciNetCrossRefGoogle Scholar
  89. 89.
    Kumar R, Balasubramanian M (2015) Experimental investigation of Ti-6Al-4V titanium alloy and 304L stainlesssteel friction welded with copper interlayer. Defence Technol 11(1):65–75CrossRefGoogle Scholar
  90. 90.
    Zhang Y, Sun DQ, Gu XY, Duan ZZ, Li HM (2018) Nd:YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer. Mater Lett 212:54–57CrossRefGoogle Scholar
  91. 91.
    Zhang Y, Sun DQ, Gu XY, Li HM (2018) Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to 301L stainless steel. J Mater Sci 53:2942–2955CrossRefGoogle Scholar
  92. 92.
    Zakipour S, Samavatian M, Halvaee A, Amadeh A, Khodabandeh A (2015) The effect of interlayer thickness on liquid state diffusion bonding behavior of dissimilar stainless steel 316/Ti-6Al-4V system. Mater Lett 142:168–171CrossRefGoogle Scholar
  93. 93.
    Zhang Y, Sun DQ, Gu XY, Li HM (2018) Nd:YAG pulsed laser welding of dissimilar metals of titanium alloy to stainless steel. Int J Adv Manuf Technol 94(1-4):1073–1085CrossRefGoogle Scholar
  94. 94.
    Gao XL, Liu J, Zhang LJ (2018) Dissimilar metal welding of Ti6Al4V and Inconel 718 through pulsed laser welding-induced eutectic reaction technology. Int J Adv Manuf Technol 96(1–4):1061–1071CrossRefGoogle Scholar
  95. 95.
    Kundu S, Chakraborty A, Mishra B (2018) Interfacial reaction and microstructure study of DSS/Cu/Ti64 diffusion-welded couple. Welding World 62(1):155–167CrossRefGoogle Scholar
  96. 96.
    Zhou XW, Chen YH, Huang YD, Mao YQ, Yu YY (2018) Effects of niobium addition on the microstructure and mechanical properties of laser-welded joints of NiTiNb and Ti6Al4V alloys. J Alloys Compd 735:2616–2624CrossRefGoogle Scholar
  97. 97.
    Wang T, Zhang BG, Feng JC, Qi T (2012) Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium–stainless steel joint. Mater Charact 73(7):104–113CrossRefGoogle Scholar
  98. 98.
    Fang YJ, Jiang XS, Mo DF, Song TF, Shao ZY, Zhu DG, Zhu MH, Luo ZP (2018) Microstructure and mechanical properties of electron beam-welded joints of titanium TC4 (Ti-6Al-4V) and kovar (Fe-29Ni-17Co) alloys with Cu/Nb multi-interlayer. Adv Mater Sci Eng 2018:1–11Google Scholar
  99. 99.
    Kannan P, Balamurugan K, Thirunavukkarasu K (2015) Influence of silver interlayer in dissimilar 6061-T6 aluminum MMC and AISI 304 stainless steel friction welds. Int J Adv Manuf Technol 81:1743–1756CrossRefGoogle Scholar
  100. 100.
    Chen SH, Zhai ZL, Huang JH, Zhao XK, Xiong JG (2016) Interface microstructure and fracture behavior of single/dual-beam laser welded steel-Al dissimilar joint produced with copper interlayer. Int J Adv Manuf Technol 82:631–643CrossRefGoogle Scholar
  101. 101.
    Li YJ, Zhao Y, Li Q, Wu AP, Zhu RC, Wang GQ (2017) Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints. Mater Des 114:226–233CrossRefGoogle Scholar
  102. 102.
    He XC, Gu FS, Ball A (2014) A review of numerical analysis of friction stirwelding. Prog Mater Sci 65:1–66CrossRefGoogle Scholar
  103. 103.
    Zhou DW, Xu SH, Peng L, Liu JS (2016) Laser lap welding quality of steel/aluminum dissimilar metal joint and its electronic simulations. Int J Adv Manuf Techol 86:2231–2242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Yongjian Fang
    • 1
  • Xiaosong Jiang
    • 1
    Email author
  • Defeng Mo
    • 2
  • Degui Zhu
    • 1
  • Zhiping Luo
    • 3
  1. 1.School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Key Laboratory of Infrared Imaging Materials and DetectorsShanghai Institute of Technical Physics, Chinese Academy of SciencesShanghaiChina
  3. 3.Department of Chemistry and PhysicsFayetteville State UniversityFayettevilleUSA

Personalised recommendations