Advertisement

On the performance of VSI Shewhart control chart for monitoring the coefficient of variation in the presence of measurement errors

  • Huu Du Nguyen
  • Quoc Thong NguyenEmail author
  • Kim Phuc Tran
  • Dang Phuc Ho
ORIGINAL ARTICLE
  • 9 Downloads

Abstract

In this paper, we propose a variable sampling interval Shewhart control chart to monitor the coefficient of variation (CV) squared, denoted by VSI SH-γ2. The new model overcomes the ARL-biased (average run length) property of the control chart monitoring the CV in a previous study by designing two one-sided charts rather than one two-sided chart. Moreover, the effect of measurement error on the performance of the VSI SH-γ2 control chart is investigated. The incorrect formula for the distribution of the CV in the presence of measurement error in a former study is fixed. Numerical simulations show that the precision errors and accuracy errors do have negative influences on the VSI SH-γ2 chart. An appropriate strategy based on the obtained results is suggested to reduce these negative effects.

Keywords

VSI control chart Coefficient of variation Measurement errors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the anonymous referees for their insightful and valuable suggestions which helped to improve the quality of the final manuscript.

References

  1. 1.
    Bennet C (1954) Effect of measurement error on chemical process control. Ind Quality Control 10(4):17–20Google Scholar
  2. 2.
    Calzada M, Scariano SM (2013) A synthetic control chart for the coefficient of variation. J Stat Comput Simul 83(5):853–867MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castagliola P, Achoure A, Taleb H, Celano G, Psarakis S (2013) Monitoring the coefficient of variation using control charts with run rules. Quality Technol Quant Manag 10:75–94CrossRefGoogle Scholar
  4. 4.
    Castagliola P, Achouri A, Taleb H, Celano G, Psarakis S (2013) Monitoring the coefficient of variation using a variable sampling interval control chart. Qual Reliab Eng Int 29(8):1135–1149CrossRefGoogle Scholar
  5. 5.
    Castagliola P, Achouri A, Taleb H, Celano G, Psarakis S (2015) Monitoring the coefficient of variation using a variable sample size control chart. Int J Adv Manuf Technol 81(9-12):1561–1576CrossRefGoogle Scholar
  6. 6.
    Castagliola P, Amdouni A, Taleb H, Celano G (2015) One-sided Shewhart-type charts for monitoring the coefficient of variation in short production runs. Quality Technol Quant Manag 12(1):53–67CrossRefGoogle Scholar
  7. 7.
    Castagliola P, Celano G, Psarakis S (2011) Monitoring the coefficient of variation using EWMA charts. J Qual Technol 43(3):249–265CrossRefGoogle Scholar
  8. 8.
    Celano G, Castagliola P, Nenes G, Fichera S (2013) Performance of t control charts in short runs with unknown shift sizes. Comput Ind Eng 64:56–68CrossRefGoogle Scholar
  9. 9.
    Costa A, Castagliola P (2011) Effect of measurement error and autocorrelation on the \(\bar {X}\) chart. J Appl Stat 38(4):661–673MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hong EP, Kang CW, Baek JW, Kang HW (2008) Development of CV control chart using EWMA technique. J Soc Korea Ind Syst Eng 31:114–120Google Scholar
  11. 11.
    Kang C, Lee M, Seong Y, Hawkins D (2007) A control chart for the coefficient of variation. J Qual Technol 39(2):151–158CrossRefGoogle Scholar
  12. 12.
    Khaw K, Khoo M, Yeong W, Wu Z (2017) Monitoring the coefficient of variation using a variable sample size and sampling interval control chart. Commun Stat Simul Comput 46(7):5722–5794MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li Z, Zou C, Gong Z, Wang Z (2014) The computation of average run length and average time to signal: an overview. J Stat Comput Simul 84(8):1779–1802MathSciNetCrossRefGoogle Scholar
  14. 14.
    Linna K, Woodall W (2001) Effect of measurement error on Shewhart control chart. J Qual Technol 33(2):213–222CrossRefGoogle Scholar
  15. 15.
    Manual (2010) Measurement system analysis. Automotive industry action group, 4th ednGoogle Scholar
  16. 16.
    Maravelakis P (2012) Measurement error effect on the CUSUM control chart. J Appl Stat 39(2):323–336MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nguyen HD, Tran KP, Heuchenne C (2019) Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts. Qual Reliab Eng Int 35(1):439–460.  https://doi.org/10.1002/qre.2412 CrossRefGoogle Scholar
  18. 18.
    Noorossana R, Zerehsaz Y (2015) Effect of measurement error on phase II monitoring of simple linear profiles. Int J Adv Manuf Technol 79(9-12):2031–2040CrossRefGoogle Scholar
  19. 19.
    Reynolds M, Amin R, Arnold J, Nachlas J (1988) \(\bar {X}\) Charts with variable sampling intervals. Technometris 30(2):181–192MathSciNetGoogle Scholar
  20. 20.
    Reynolds M, Arnold J (1989) Optimal one-sided Shewhart charts with variable sampling interval. Seq Anal 80(1):181–192MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tran K, Castagliola P, Celano G (2016) The performance of the Shewhart-RZ control chart in the presence of measurement error. Int J Prod Res 54:7504–7522CrossRefGoogle Scholar
  22. 22.
    Tran KP, Nguyen HD, Nguyen QT, Chattinnawat W (2018) One-sided synthetic control charts for monitoring the coefficient of variation with measurement errors. In: 2018 IEEE international conference on industrial engineering and engineering management (IEEM), pp 1667–1671.  https://doi.org/10.1109/IEEM.2018.8607320
  23. 23.
    Tran KP, Heuchenne C, Balakrishnan N (2019) On the performance of coefficient of variation charts in the presence of measurement errors. Qual Reliab Eng Int 35(1):329–350.  https://doi.org/10.1002/qre.2402 CrossRefGoogle Scholar
  24. 24.
    Tran P, Tran K, Rakitzis A (2019) A synthetic median control chart for monitoring the process mean with measurement errors. Quality and Reliability Engineering International.  https://doi.org/10.1002/qre.2447
  25. 25.
    Tran P, Tran KP (2016) The efficiency of CUSUM schemes for monitoring the coefficient of variation. Appl Stoch Model Bus Ind 32(6):870–881MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yeong W, Khoo M, Lim S, Lee M (2017) A direct procedure for monitoring the coefficient of variation using a variable sample size scheme. Commun Stat Simul Comput 46(6):4210–4225MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yeong WC, Khoo MBC, Lim SL, Teoh WL (2017) The coefficient of variation chart with measurement error. Qual Technol Quant Manag 14(4):353–377CrossRefGoogle Scholar
  28. 28.
    Yeong WC, Lim SL, Khoo MBC, Castagliola P (2018) Monitoring the coefficient of variation using a variable parameters chart. Qual Eng 30(2):212–235CrossRefGoogle Scholar
  29. 29.
    You H, Khoo BM, Castagliola P, Haq A (2016) Monitoring the coefficient of variation using the side sensitive group runs chart. Qual Reliab Eng Int 32(5):1913–1927CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Artificial IntelligenceDong A UniversityDanangVietnam
  2. 2.Laboratoire de Mathématiques de Bretagne AtlantiqueUniversité de Bretagne Sud, UMR CNRS 6205VannesFrance
  3. 3.Ecole Nationale Supérieure des Arts et Industries TextilesGEMTEX LaboratoryRoubaixFrance
  4. 4.Department of Probability and Mathematical StatisticsInstitute of MathematicsHanoiVietnam

Personalised recommendations