Advertisement

Time-dependency of mechanical properties and component behavior after friction stir welding

  • Max HossfeldEmail author
ORIGINAL ARTICLE
  • 20 Downloads

Abstract

This paper reports on the time dependency of mechanical properties and component behavior during the first hours after friction stir welding (FSW). Three different aluminum alloys, two age-hardened alloys AA 6014-T4 and 6016-T4 and as a reference 5182-O/H111, are welded and samples are taken from the steady-state region immediately. Those samples are examined at various time intervals by means of tensile and hardness testing to quantify local properties and their recovery over time. Initially, the FSW process leads to a significant reduction in mechanical properties of the age-hardened alloys and to an altered, time-dependent component behavior as opposed to the base material. For AA 6014 and 6016, all mechanical properties recover significantly within a few hours after welding, whereby the gradient is initially very steep and levels out after 1–2 days. Gradients of up to 6 MPa/h and relative increases of more than 25% are observed for ultimate tensile strength within the first 2 days. As such, the increase in strength within the heat-affected zone and with it the entire welded component can be compared to natural aging after solution annealing. The results show the importance of considering the time dependency for weld qualification and also for comparing studies of age-hardenable alloys.

Keywords

Friction stir welding Time-dependent component behavior Recovery and evolution of mechanical properties Weld qualification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author thanks Andrea Gommeringer, Oliver Volz, and Rudi Scheck for their great flexibility and effort regarding some of the time-critical experimental work.

Funding information

Parts of this study was supported by the German Research Foundation (DFG) Project RO 651/16-1.

References

  1. 1.
    Altenpohl D (1965) Aluminium und Aluminiumlegierungen, vol 19. Springer, Berlin.  https://doi.org/10.1007/978-3-662-30245-3 CrossRefGoogle Scholar
  2. 2.
    Balasubramanian V (2008) Relationship between base metal properties and friction stir welding process parameters. Mater Sci Eng: A 480(1-2):397–403.  https://doi.org/10.1016/j.msea.2007.07.048 CrossRefGoogle Scholar
  3. 3.
    Borchers H, Schwarzmaier W (1943) Der einfluß nachträglicher wärmebehandlung auf den aushärtungzustand einer aluminium-magnesium-silicium-legierung. Z Metallkund 35:237–242Google Scholar
  4. 4.
    Brenner P, Kostron H (1939) Über die vergütung der aluminium-magnesium-silizium-legierungen (pantal). Z Metallkund 31:89–97Google Scholar
  5. 5.
    Fujii H, Cui L, Maeda M, Nogi K (2006) Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng: A 419(1-2):25–31.  https://doi.org/10.1016/j.msea.2005.11.045 CrossRefGoogle Scholar
  6. 6.
    Fuller CB, Mahoney MW, Calabrese M, Micona L (2010) Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds. Mater Sci Eng: A 527(9):2233–2240CrossRefGoogle Scholar
  7. 7.
    Gan W, Okamoto K, Hirano S, Chung K, Kim C, Wagoner R (2008) Properties of friction-stir welded aluminum alloys 6111 and 5083. J Eng Mater Technol 130(3):031007CrossRefGoogle Scholar
  8. 8.
    Genevois C, Fabregue D, Deschamps A, Poole WJ (2006) On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy. Mater Sci Eng: A 441(1):39–48.  https://doi.org/10.1016/j.msea.2006.07.151 CrossRefGoogle Scholar
  9. 9.
    Haase C, Wurst H (1941) Zur frage der kalt- und warmaushärtung bei aluminium-magnesium-silizium-legierungen. Z Metallkund 33:399–403Google Scholar
  10. 10.
    Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, Nazari E (2012) Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Mater Des 37:166–173.  https://doi.org/10.1016/j.matdes.2011.12.022 CrossRefGoogle Scholar
  11. 11.
    Hossfeld M (2016a) Experimental, analytical and numerical investigations of the friction stir welding process. PhD thesis, University of Stuttgart.  https://doi.org/10.18419/opus-8957
  12. 12.
    Hossfeld M (2016b) A fully coupled thermomechanical 3D model for all phases of friction stir welding. In: 11th international symposium on friction stir welding.  https://doi.org/10.18419/opus-8845
  13. 13.
    Hossfeld M, Roos E (2013) A new approach to modelling friction stir welding using the CEL method. Advanced Manufacturing Engineering and Technologies NEWTECH, pp 179–190.  https://doi.org/10.18419/opus-8825
  14. 14.
    Huppert-Schemme G (1996) AlMgSi-Bleche für den Fahrzeugbau. Aluminium-VerlagGoogle Scholar
  15. 15.
    ISO 25239-4 (2011) Friction stir welding - aluminium - part 4: specification and qualification of welding procedures (ISO 25239-4:2011)Google Scholar
  16. 16.
    Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing. Springer International Publishing.  https://doi.org/10.1007/978-3-319-07043-8
  17. 17.
    Nandan R, DebRoy T, Bhadeshia H (2008) Recent advances in friction-stir welding - process, weldment structure and properties. Progress Mater Sci 53(6):980–1023.  https://doi.org/10.1016/j.pmatsci.2008.05.001 CrossRefGoogle Scholar
  18. 18.
    Olea CAW (2008) Influence of energy input in friction stir welding on structure evolution and mechanical behaviour of precipitation-hardening in aluminium alloys (AA2024-T351, AA6013-T6 and Al-Mg-Sc). GKSS-Forschungszentrum GeesthachtGoogle Scholar
  19. 19.
    Ostermann F (2014) Anwendungstechnologie Aluminium. Springer, Berlin.  https://doi.org/10.1007/978-3-662-43807-7 CrossRefGoogle Scholar
  20. 20.
    Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801.  https://doi.org/10.1016/S1359-6454(03)00319-7 CrossRefGoogle Scholar
  21. 21.
    Rahimzadeh Ilkhichi A, Soufi R, Hussain G, Vatankhah Barenji R, Heidarzadeh A (2015) Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA 7020 aluminum alloy joints. Metall and Mater Trans B 46(1):357–365.  https://doi.org/10.1007/s11663-014-0205-x CrossRefGoogle Scholar
  22. 22.
    Rodrigues DM, Loureiro A, Leitao C, Leal RM, Chaparro BM, Vilaċa P (2009) Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater Des 30(6):1913–1921.  https://doi.org/10.1016/j.matdes.2008.09.016 CrossRefGoogle Scholar
  23. 23.
    Sato YS, Kokawa H, Enomoto M, Jogan S, Hashimoto T (1999) Precipitation sequence in friction stir weld of 6063 aluminum during aging. Metall Mater Trans A 30(12):3125–3130CrossRefGoogle Scholar
  24. 24.
    Sato YS, Park SHC, Kokawa H (2001) Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall and Mater Trans A 32(12):3033–3042.  https://doi.org/10.1007/s11661-001-0178-7 CrossRefGoogle Scholar
  25. 25.
    Scialpi A, Filippis LD, Cavaliere P (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Des 28(4):1124–1129.  https://doi.org/10.1016/j.matdes.2006.01.031 CrossRefGoogle Scholar
  26. 26.
    Uematsu Y, Tokaji K, Shibata H, Tozaki Y, Ohmune T (2009) Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminium alloys. Int J Fatigue 31(10): 1443–1453.  https://doi.org/10.1016/j.ijfatigue.2009.06.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Testing InstituteUniversity of StuttgartStuttgartGermany
  2. 2.Institut für Strahlwerkzeuge (IFSW)University of StuttgartStuttgartGermany

Personalised recommendations