Advertisement

Yttria stabilized zirconia (YSZ) thin wall structures fabricated using laser engineered net shaping (LENS)

  • Zhiqi Fan
  • Yitian Zhao
  • Mingyuan LuEmail author
  • Han HuangEmail author
ORIGINAL ARTICLE
  • 22 Downloads

Abstract

Yttria stabilized zirconia (YSZ) thin wall components were fabricated using laser engineered net shaping (LENS) technique. It was found that after LENS processing, the monoclinic (m) phase in as-received YSZ powders transformed to tetragonal (t) and cubic (c) phases with the lenticular shaped t-ZrO2 embedded in the c-ZrO2 matrix. The relative density of the parts reached up to 98.7%. Our investigation showed that micro cracks within the wall structure were reduced by judiciously choosing laser power parameter. The fabricated parts have surface roughness values that ranged from 20 to 40 μm. The maximum hardness and elastic modulus achieved from the LENSed YSZ parts were 19.8 GPa and 236.1 GPa, respectively. We also demonstrated that dark brown color of the LENSed parts could be removed via heat treatment.

Keywords

Laser engineered net shaping LENS Yttria stabilized zirconia Solidification Thin wall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Ms. Ying Yu for her help in Raman spectroscopic analysis, and Mr. Ron Rasch for valuable discussion on microstructural analysis. The authors also want to acknowledge the facility use in the Australian National Fabrication Facility (ANFF) and the Centre for Microscopy and Microanalysis (CMM) at The University of Queensland.

Funding information

This project was partially funded by the UQ CIEF grant and Medical Engineering @ UQ SEED grant.

References

  1. 1.
    Garvie R, Hannink R, Pascoe R (1975) Ceramic steel? Nature 258(5537):703–704CrossRefGoogle Scholar
  2. 2.
    Jin X-J (2005) Martensitic transformation in zirconia containing ceramics and its applications. Curr Opinion Solid State Mater Sci 9(6):313–318CrossRefGoogle Scholar
  3. 3.
    Huang H (2003) Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding. Mater Sci Eng A 345(1–2):155–163CrossRefGoogle Scholar
  4. 4.
    Basu B (2005) Toughening of yttria-stabilised tetragonal zirconia ceramics. Int Mater Rev 50(4):239–256CrossRefGoogle Scholar
  5. 5.
    Hagedorn Y-C (2013) Additive manufacturing of high performance oxide ceramics via selective laser melting (No. RWTH-CONV-144031). Lehrstuhl für Lasertechnik (PhD thesis).Google Scholar
  6. 6.
    Wilkes J, Hagedorn YC, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp J 19(1):51–57CrossRefGoogle Scholar
  7. 7.
    Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 254(4):989–992CrossRefGoogle Scholar
  8. 8.
    Liu Q, Danlos Y, Song B, Zhang B, Yin S, Liao H (2015) Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic. J Mater Process Technol 222:61–74CrossRefGoogle Scholar
  9. 9.
    Liu Q, Song B, Liao H (2014) Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser. Rapid Prototyp J 20(5):346–354CrossRefGoogle Scholar
  10. 10.
    Li Y, Hu Y, Cong W, Zhi L, Guo Z (2017) Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables. Ceram Int 43(10):7768–7775Google Scholar
  11. 11.
    Balla VK, Bose S, Bandyopadhyay A (2008) Processing of bulk alumina ceramics using laser engineered net shaping. Int J Appl Ceram Technol 5(3):234–242CrossRefGoogle Scholar
  12. 12.
    Niu F, Wu D, Ma G, Zhang B (2015) Additive manufacturing of ceramic structures by laser engineered net shaping. Chin J Mech Eng 28(6):1117–1122CrossRefGoogle Scholar
  13. 13.
    Niu F, Wu D, Ma G, Wang J, Guo M, Zhang B (2015) Nanosized microstructure of Al2O3–ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping. Scr Mater 95:39–41CrossRefGoogle Scholar
  14. 14.
    Ma G, Yan S, Wu D, Miao Q, Liu M, Niu F (2017) Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating. Ceram Int 43:9622–9629CrossRefGoogle Scholar
  15. 15.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  16. 16.
    Tsoga A, Nikolopoulos P (1996) Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 Mol%). J Mater Sci 31(20):5409–5413CrossRefGoogle Scholar
  17. 17.
    Fan Z, Lu M, Huang H (2018) Selective laser melting of alumina: a single track study. Ceram Int 44:9484–9493CrossRefGoogle Scholar
  18. 18.
    Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol 230:88–98CrossRefGoogle Scholar
  19. 19.
    Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRefGoogle Scholar
  20. 20.
    Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders. Phys Procedia 12:264–270CrossRefGoogle Scholar
  21. 21.
    Kempen K, Thijs L, van Humbeeck J, Kruth JP (2015) Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Mater Sci Technol 31(8):917–923CrossRefGoogle Scholar
  22. 22.
    Song B, Dong S, Deng S, Liao H, Coddet C (2014) Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt Laser Technol 56:451–460CrossRefGoogle Scholar
  23. 23.
    Niu F et al (2017) Process optimization for suppressing cracks in laser engineered net shaping of Al 2 O 3 ceramics. JOM 69(3):557–562CrossRefGoogle Scholar
  24. 24.
    Phillippi C, Mazdiyasni K (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54(5):254–258CrossRefGoogle Scholar
  25. 25.
    Li M et al (2003) Study of influence of calcination atmosphere on phase transformation of zirconia by UV Raman spectroscopy. Chin J Catal 24(11):861–866.Google Scholar
  26. 26.
    Ghosh A, Suri AK, Pandey M, Thomas S, Rama Mohan TR, Rao BT (2006) Nanocrystalline zirconia-yttria system–a Raman study. Mater Lett 60(9–10):1170–1173CrossRefGoogle Scholar
  27. 27.
    Srinivasan R, de Angelis RJ, Ice G, Davis BH (1991) Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source. J Mater Res 6(6):1287–1292CrossRefGoogle Scholar
  28. 28.
    Schmid H (1987) Quantitative analysis of polymorphic mixes of zirconia by X-ray diffraction. J Am Ceram Soc 70(5):367–376CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Lei TC, Sakuma T (1991) Diffusionless cubic-to-tetragonal phase transition and microstructural evolution in sintered zirconia–Yttria ceramics. J Am Ceram Soc 74(3):633–640CrossRefGoogle Scholar
  30. 30.
    Sakuma T, Yoshizawa Y-I, Suto H (1985) The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arc-melting. J Mater Sci 20(7):2399–2407CrossRefGoogle Scholar
  31. 31.
    Lin KL, Lin CC (2005) Zirconia-related phases in the zirconia/titanium diffusion couple after annealing at 1100°–1550° C. J Am Ceram Soc 88(10):2928–2934Google Scholar
  32. 32.
    Lian J, Garay JE, Wang J (2007) Grain size and grain boundary effects on the mechanical behavior of fully stabilized zirconia investigated by nanoindentation. Scr Mater 56(12):1095–1098CrossRefGoogle Scholar
  33. 33.
    Sponchia G, Moshtaghioun BM, Benedetti A, Riello P, Gómez-García D, Domínguez-Rodríguez A, Ortiz AL (2017) Ceramics of ta-doping stabilized orthorhombic ZrO2 densified by spark plasma sintering and the effect of post-annealing in air. Scr Mater 130:128–132CrossRefGoogle Scholar
  34. 34.
    Guo X, Sun Y-Q, Cui K (1996) Darkening of zirconia: a problem arising from oxygen sensors in practice. Sensors Actuators B Chem 31(3):139–145CrossRefGoogle Scholar
  35. 35.
    Moya JS, Moreno R, Requena J, Soria J (1988) Black color in partially stabilized zirconia. J Am Ceram Soc 71(11):C479–C480CrossRefGoogle Scholar
  36. 36.
    Ingo GM (1991) Origin of darkening in 8 wt% Yttria—zirconia plasma-sprayed thermal barrier coatings. J Am Ceram Soc 74(2):381–386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Mining EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations