Advertisement

On fabrication and characteristics of injection molded ABS/Al2O3 nanocomposites

  • Amin AbediniEmail author
  • Taghi Asiyabi
  • Heather R. Campbell
  • Rezgar Hassanzadeh
  • Taher Azdast
ORIGINAL ARTICLE
  • 8 Downloads

Abstract

Nanocomposites of well-dispersed Al2O3 nanoparticles in acrylonitrile-butadiene-styrene (ABS) matrix were prepared via injection molding. Effects of the percentage of Al2O3 nanoparticles and injection molding process parameters on the mechanical and thermal properties of nanocomposites were studied. X-Ray powder diffraction (XRD) and scanning electron microscopy (SEM) showed that a homogeneous dispersion was achieved with 3% nanoparticles loading. Thermal analyses showed that the ABS/Al2O3 nanocomposites exhibited slightly enhanced degradation behavior when compared with neat ABS. Tensile tests and density measurements revealed that the specific strength and specific stiffness of ABS/Al2O3 nanocomposites were significantly superior to those of neat ABS. Impact tests showed that the addition of Al2O3 nanoparticles to an ABS matrix significantly decreased the impact strength of the nanocomposites. Analysis of variance demonstrated that the percentage of Al2O3 nanoparticles is the dominant variable affecting mechanical properties of ABS/Al2O3 nanocomposites. The effects of injection molding process parameters were statistically insignificant which imply more flexibility on selecting the injection molding processing conditions.

Keywords

ABS Al2O3 Nanocomposites Injection molding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

A. Abedini gratefully acknowledges Marsac’s Lab at the College of Pharmacy of University of Kentucky for providing XRD, TGA, and mDSC equipment.

References

  1. 1.
    Kumar AP, Depan D, Tomer NS, Singh RP (2009) Nanoscale particles for polymer degradation and stabilization–trends and future perspectives. Prog Polym Sci 34(6):479–515CrossRefGoogle Scholar
  2. 2.
    Ciprari D, Karl J, Rina T (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39(19):6565–6573CrossRefGoogle Scholar
  3. 3.
    Liang W, Duan Z, Sun K, Liang H, Wang Z, Guo C (2017) Mechanical performance of Nano-Al2O3-modified composites at cryogenic and room temperatures. Polym ComposGoogle Scholar
  4. 4.
    Ghavidel AK, Azdast T, Shabgard MR, Navidfar A, Shishavan SM (2015) Effect of carbon nanotubes on laser cutting of multi-walled carbon nanotubes/poly methyl methacrylate nanocomposites. Opt Laser Technol 67:119–124CrossRefGoogle Scholar
  5. 5.
    Olad A, Ranjbaran L (2013) Influence of natural clinoptilolite nanoparticles on thermal stability, scratch resistance and adherence properties of Acrylonitrile butadiene styrene (ABS). Fiber Polym 14(3):447–452CrossRefGoogle Scholar
  6. 6.
    Herrera N, Salaberria AM, Mathew AP, Oksman K (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Composites Part A 83:89–97CrossRefGoogle Scholar
  7. 7.
    Aguilar-Bolados H, Lopez-Manchado MA, Brasero J, Avilés F, Yazdani-Pedram M (2016) Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B 87 :350–356CrossRefGoogle Scholar
  8. 8.
    Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15(3):212–226CrossRefGoogle Scholar
  9. 9.
    Al-Saleh MH, Al-Anid HK, Hussain YA (2013) CNT/ABS Nanocomposites by solution processing: proper dispersion and selective localization for low percolation threshold. Composites Part A 46:53–59CrossRefGoogle Scholar
  10. 10.
    Navidfar A, Azdast T, Ghavidel AK (2016) Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposites. J Appl Polym Sci 133(31):43738Google Scholar
  11. 11.
    Koo JH (2006) Polymer nanocomposites. McGraw-Hill Professional Publishing, USAGoogle Scholar
  12. 12.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites–a review. Prog Polym Sci 38(8):1232–1261CrossRefGoogle Scholar
  13. 13.
    Chandra A, Turng LS, Li K, Huang HX (2011) Fracture behavior and optical properties of melt compounded semi-transparent polycarbonate (PC)/alumina nanocomposites. Composites Part A 42(12):1903–1909CrossRefGoogle Scholar
  14. 14.
    Yu W, Xie H, Chen L, Wang M, Wang W (2015) Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets. Polym Compos 38(10):2221–2227CrossRefGoogle Scholar
  15. 15.
    Zakaria MR, Akil NH, Kudus MHA, Saleh SSM (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Composites Part A 66:109–116CrossRefGoogle Scholar
  16. 16.
    Lee RE, Ghazi AA, Azdast T, Hasanzadeh R, Shishavan SM (2017) Tensile and hardness properties of polycarbonate nanocomposites in the presence of styrene maleic anhydride as compatibilizer. Adv Polym Technol 37(6):1737–1743Google Scholar
  17. 17.
    Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F, Liu L (2015) Effect of ZnO nanoparticles doped graphene on static and dynamic mechanical properties of natural rubber composites. Composites Part A 70:35–44CrossRefGoogle Scholar
  18. 18.
    Agrawal S, Saraswat YK, Saraswat VK (2016) Thermal study of PMMA-zno polymer nanocomposites using differential scanning calorimeter. Adv Sci Lett 22(11):3759–3761CrossRefGoogle Scholar
  19. 19.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  20. 20.
    Shofner ML, Rodríguez-macías FJ, Vaidyanathan R, Barrera EV (2003) Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Composites Part A 34 (12):1207–1217CrossRefGoogle Scholar
  21. 21.
    Khan AN, Waheed Q, Jan R, Yaqoob K, Ali Z, Gul IH (2017) Experimental and theoretical correlation of reinforcement trends in acrylonitrile butadiene styrene/single-walled carbon nanotubes hybrid composites. Polym Compos 39(S2):E902–E908CrossRefGoogle Scholar
  22. 22.
    Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A 85:181–191CrossRefGoogle Scholar
  23. 23.
    Shishavan SM, Azdast T, Rash-Ahmadi S (2014) Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile butadiene styrene–organoclay nanocomposites. Mater Des 58:527–534CrossRefGoogle Scholar
  24. 24.
    Pertti A (1996) Mechanical and physical properties of engineering alumina ceramics. Tech Res Cen Finland EspooGoogle Scholar
  25. 25.
    Kumar V, RamKumar J, Aravindan S, Malhotra SK, Vijai K, Shukla M (2009) Fabrication and characterization of ABS nano composite reinforced by nano sized alumina particulates. Int J Plast Technol 13 (2):133–149CrossRefGoogle Scholar
  26. 26.
    Panneerselvam T, Kandavel TK, Raghuraman S (2016) Experimental investigations on tribological behaviour of alumina added acrylonitrile butadiene styrene (ABS) composites. Trib Indu 38(3):338–346Google Scholar
  27. 27.
    D 638-10 (2010) ASTM. Standard test method for tensile properties of plastics. ASTM International, West ConshohockenGoogle Scholar
  28. 28.
    D 256-10e1 (2010) ASTM. Standard test method for tensile properties of plastics. ASTM International, West ConshohockenGoogle Scholar
  29. 29.
    Abedini A, Rahimlou P, Asiabi T, Rash-Ahmadi S, Azdast T (2015) Effect of flow forming on mechanical properties of high density polyethylene pipes. J Manuf Processes 19:155–162CrossRefGoogle Scholar
  30. 30.
    Boparai KS, Singh R, Singh H (2016) Process optimization of single screw extruder for development of Nylon 6-Al-Al2O3 alternative FDM filament. Rapid Prototyping J 22(4):766–776CrossRefGoogle Scholar
  31. 31.
    Abedini A, Rash-Ahmadi S, Doniavi A (2014) Roughness optimization of flow-formed tubes using the Taguchi method. Int J Adv Manuf Technol 72(5-8):1009–1019CrossRefGoogle Scholar
  32. 32.
    D 256-10e1 (2013) ASTM. Standard test methods for determining the izod pendulum impact resistance of plastics. ASTM International, West ConshohockenGoogle Scholar
  33. 33.
    Hong N, Zhan J, Wang X, Stec AA, Hull TR, Ge H, Xing W, Song L, Hu Y (2014) Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Composites Part A 64 :203–210CrossRefGoogle Scholar
  34. 34.
    Khan NA, Sailaja RRN (2015) Mechanical and flammability characteristics of PC/ABS composites loaded with flyash cenospheres and multiwalled carbon nanotubes. Polym Compos 38(6):1043–1052Google Scholar
  35. 35.
    Downs RT, Wallace MH (2003) The American Mineralogist crystal structure database. Am Mineral 46(4):271–284Google Scholar
  36. 36.
    Kirfel A, Eichhorn K (1990) Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Cryst A 46(4):271–284CrossRefGoogle Scholar
  37. 37.
    Ozcelik B, Ozbay A, Demirbas E (2010) Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int Commu Heat Mass 37(9):1359–1365CrossRefGoogle Scholar
  38. 38.
    Kar KK, Srivastava S, Rahaman A, Nayek SK (2008) Acrylonitrile-butadiene-styrene nanocomposites filled with nanosized alumina. Polym Sci 29(5):489–499Google Scholar
  39. 39.
    Jones DW, Jones PA, Wilson HJ (1972) The modulus of elasticity of dental ceramics. Dent Pract Dent Rec 22(5):170–173Google Scholar
  40. 40.
    Pomogalio AD, Kestelman VK (2006) Metallopolymer nanocomposites. Springer Science & Business Media, BerlinGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Amin Abedini
    • 1
    Email author
  • Taghi Asiyabi
    • 2
  • Heather R. Campbell
    • 1
  • Rezgar Hassanzadeh
    • 2
  • Taher Azdast
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Department of Mechanical EngineeringUrmia UniversityUrmiaIran

Personalised recommendations