Advertisement

Application of laser-arc hybrid welding of steel for low-temperature service

  • Ivan BunazivEmail author
  • Odd M. Akselsen
  • Jan Frostevarg
  • Alexander F. H. Kaplan
ORIGINAL ARTICLE
  • 25 Downloads

Abstract

Laser-arc hybrid welding (LAHW) is more often used in shipbuilding and oil and gas industries in recent years. Its popularity arises due to many advantages compared to conventional arc welding processes. The laser beam source is used to achieve much higher penetration depths. By adding filler wire to the process area, by means of an arc source, the mechanical properties can be improved, e.g. higher toughness at low temperatures. Therefore, LAHW is a perspective process for low-temperature service. Applicability of LAHW is under concern due to process stability and mechanical properties related to heterogeneous filler wire distribution through the whole weld metal in deep and narrow joints. This can cause reduced mechanical properties in the weld root as well as problems with solidification cracking. The fast cooling rate in the root provides hard and brittle microconstituents lowering toughness at low temperatures. Numerical simulations and experimental observations showed that an increase in heat input from the laser beam is an effective way to reduce the cooling rate, which is also possible by applying preheating.

Keywords

Laser beam Hybrid welding Microstructure Toughness Numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

The authors received funding from the Research Council of Norway through the Petromaks 2 Programme, Contract No. 228513/E30, as well as EU-RFCS project OptoSteel. The financial support from ENI, Statoil, Lundin, Total, JFE Steel Corporation, Posco, Kobe Steel, SSAB, Bredero Shaw, Borealis, Trelleborg, Nexans, Aker Solutions, FMC Kongsberg Subsea, Marine Aluminium, Hydro and Sapa are also acknowledged.

References

  1. 1.
    Akselsen OM, Solberg JK, Grong Ø (1988) Effects of martensite-austenite (M-A) islands on intercritical heat-affected zone toughness of low carbon microalloyed steels. Scand J Metall 17:194–200Google Scholar
  2. 2.
    Akselsen OM, Grong Ø, Solberg JK (1987) Structure–property relationships in intercritical heat affected zone of low-carbon microalloyed steels. Mater Sci Technol 3(8):649–655CrossRefGoogle Scholar
  3. 3.
    Nielsen SE (2015) High power laser hybrid welding—challenges and perspectives. Phys Procedia 78(Supplement C):24–34CrossRefGoogle Scholar
  4. 4.
    Bunaziv I, Frostevarg J, Akselsen OM, Kaplan AFH (2018) The penetration efficiency of thick plate laser-arc hybrid welding. Int J Adv Manuf Technol 97(5):2907–2919CrossRefGoogle Scholar
  5. 5.
    Kaplan AFH (2012) Local absorptivity modulation of a 1 μm-laser beam through surface waviness. Appl Surf Sci 258(24):9732–9736CrossRefGoogle Scholar
  6. 6.
    Kaplan AFH (2012) Fresnel absorption of 1 μm- and 10 μm-laser beams at the keyhole wall during laser beam welding: comparison between smooth and wavy surfaces. Appl Surf Sci 258(8):3354–3363CrossRefGoogle Scholar
  7. 7.
    Kaplan AFH (2015) Absorption homogenization at wavy melt films by CO2-lasers in contrast to 1 μm-wavelength lasers. Appl Surf Sci 328:229–234CrossRefGoogle Scholar
  8. 8.
    Wang H, Kawahito Y, Yoshida R, Nakashima Y, Shiokawa K (2018) A model to calculate the laser absorption property of actual surface. Int J Heat Mass Transf 118:562–569CrossRefGoogle Scholar
  9. 9.
    Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27(9):1805–1814CrossRefGoogle Scholar
  10. 10.
    Cheng Y, Jin X, Li S, Zeng L (2012) Fresnel absorption and inverse bremsstrahlung absorption in an actual 3D keyhole during deep penetration CO2 laser welding of aluminum 6016. Opt Laser Technol 44(5):1426–1436CrossRefGoogle Scholar
  11. 11.
    Matsunawa A, Semak V (1997) The simulation of front keyhole wall dynamics during laser welding. J Phys D Appl Phys 30(5):798–809CrossRefGoogle Scholar
  12. 12.
    Kaplan AFH (2015) Local flashing events at the keyhole front in laser welding. Opt Lasers Eng 68:35–41CrossRefGoogle Scholar
  13. 13.
    Shcherbakov EA, Fomin VV, Abramov AA, Ferin AA,Mochalov DV, Gapontsev VP (2013) Industrial grade 100 kW power CW fiber laser. In: Advanced Solid State Lasers CongressGoogle Scholar
  14. 14.
    Grupp M, Klinker K, Cattaneo S (2011) Welding of high thicknesses using a fibre optic laser up to 30 kW. Weld Int 27(2):109–112CrossRefGoogle Scholar
  15. 15.
    Standfuss J, Beyer E, Brenner B, Schedewy R, Dittrich D, Strohbach R (2015) Laser-multi-pass-welding of aluminium and steel with sheet thickness above 50mm. In: 34th International Congress on Applications of Lasers & Electro-Optics (ICALEO). USA, Atlanta: 626–631Google Scholar
  16. 16.
    Reutzel EW, Kelly SM, Sullivan MJ, Huang TD, Kvidahl L, Martukanitz RP (2008) Hybrid laser-GMA welding for improved affordability. J Ship Product 24(2):72–81Google Scholar
  17. 17.
    Ren X, Ås SK, Akselsen OM, Nyhus B (2011)Comparison of hybrid laser-arc and conventional welding for arctic applications. In: 21st Inte rnational Offshore and Polar Engineering Conference (ISOPE). Maui, Hawaii, USAGoogle Scholar
  18. 18.
    Ren XB, Zhang ZL, Nyhus B (2011) Effect of residual stress on cleavage fracture toughness by using cohesive zone model. Fatigue Fract Eng Mater Struct 34(8):592–603CrossRefGoogle Scholar
  19. 19.
    Frostevarg J (2014) The morphology of laser arc hybrid welds. PhD Thesis. Luleå University of Technology, Department of Engineering Sciences and Mathematics, Product and Production Development. ISBN: 978-91-7439-916-5Google Scholar
  20. 20.
    Katayama S (2013) Handbook of Laser Welding Technologies. Woodhead Publishing.Google Scholar
  21. 21.
    Webster S, Kristensen JK, Petring D (2008) Joining of thick section steels using hybrid laser welding. Ironmak Steelmak 35(7):496–504CrossRefGoogle Scholar
  22. 22.
    Akselsen OM,Wiklund G, Østby E, Sørgjerd A, Kaplan A (2013) A first assessment of laser hybrid welding of 420 MPa steel for offshore structure applications. In: 14th Nordic Laser Materials Processing Conference (NOLAMP). Gothenburg, Sweden: 171- 182Google Scholar
  23. 23.
    Gook S, Gumenyuk A, Rethmeier M (2014) Hybrid laser arc welding of X80 and X120 steel grade. Sci Technol Weld Join 19(1):15–24CrossRefGoogle Scholar
  24. 24.
    Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Deep penetration fiber laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 256:216–228CrossRefGoogle Scholar
  25. 25.
    Guo W, Li L, Dong S, Crowther D, Thompson A (2017) Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel. Opt Lasers Eng 91:1–15CrossRefGoogle Scholar
  26. 26.
    Zhang C, Li G, Gao M, Zeng X (2017) Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel. Materials (Basel) 10(2): 106.  https://doi.org/10.3390/ma10020106
  27. 27.
    Yamazaki Y, Abe Y, Hioki Y, Nakatani M, Kitagawa A, Nakata K (2016) Fundamental study of narrow-gap welding with oscillation laser beam. Weld Int 30(9):699–707CrossRefGoogle Scholar
  28. 28.
    Näsström J, Frostevarg J, Silver T (2015) Hot-wire laser welding of deep and wide gaps. Phys Procedia 78:247–254CrossRefGoogle Scholar
  29. 29.
    Shi H, Zhang K, Zheng J, Chen Y (2017) Defects inhibition and process optimization for thick plates laser welding with filler wire. J Manuf Process 26(Supplement C):425–432CrossRefGoogle Scholar
  30. 30.
    Wu S, Zhang J, Yang J, Lu J, Liao H, Wang X (2018) Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm. J Nucl Mater 503:66–74CrossRefGoogle Scholar
  31. 31.
    Bunaziv I, Frostevarg J, Akselsen OM, Kaplan AFH (2018) Process stability during fiber laser-arc hybrid welding of thick steel plates. Opt Lasers Eng 102(Supplement C):34–44CrossRefGoogle Scholar
  32. 32.
    Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 259:75–87CrossRefGoogle Scholar
  33. 33.
    Fellman A, Salminen A (2007) Study of the phenomena of fiber laser-mag hybrid welding. In: 26th International Congress on Applications of Lasers and Electro-Optics (ICALEO). LIA, Orlando, USA.  https://doi.org/10.2351/1.5061017
  34. 34.
    Hu B, den Ouden G (2005) Laser induced stabilisation of the welding arc. Sci Technol Weld Join 10(1):76–81CrossRefGoogle Scholar
  35. 35.
    Hu B, den Ouden G (2005) Synergetic effects of hybrid laser/arc welding. Sci Technol Weld Join 10(4):427–431CrossRefGoogle Scholar
  36. 36.
    Hayashi T, Katayama S, Abe N, Omori A (2004) High-power CO2 laser-MIG hybrid welding for increased gap tolerance. Hybrid weldability of thick steel plates with a square groove. Weld Int 18(9):692–701CrossRefGoogle Scholar
  37. 37.
    Ribic B, Palmer TA, DebRoy T (2009) Problems and issues in laser-arc hybrid welding. Int Mater Rev 54(4):223–244CrossRefGoogle Scholar
  38. 38.
    Kutsuna M, Chen L (2003) Interaction of both plasmas in CO2 Laser-MAG hybrid welding of carbon steel. In: Proceedings of the SPIE: 341-346.  https://doi.org/10.1117/12.497773
  39. 39.
    Wahba M, Mizutani M, Katayama S (2015) Hybrid welding with fiber laser and CO2 gas shielded arc. J Mater Process Technol 221:146–153CrossRefGoogle Scholar
  40. 40.
    Abe N, Kunugita Y, Hayashi M, Tsuchitani Y (1997) Dynamic observation of high speed laser-arc combination welding of thick steel plates. Trans JWRI 26(2):7–11Google Scholar
  41. 41.
    Liu S, Zhang F, Dong S, Zhang H, Liu F (2018) Characteristics analysis of droplet transfer in laser-MAG hybrid welding process. Int J Heat Mass Transf 121:805–811CrossRefGoogle Scholar
  42. 42.
    Steen WM (1980) Arc augmented laser processing of materials. J Appl Phys 51(11):5636–5641CrossRefGoogle Scholar
  43. 43.
    Olsen F (2009) Hybrid laser-arc welding. Woodhead PublishingGoogle Scholar
  44. 44.
    Turichin G, Valdaytseva E, Tzibulsky I, Lopota A, Velichko O (2011) Simulation and technology of hybrid welding of thick steel parts with high power fiber laser. Phys Procedia 12(Part A):646–655CrossRefGoogle Scholar
  45. 45.
    You CP, Knott JF (1986) Effects of crack shape on fracture toughness in a high-strength structural steel. Eng Fract Mech 24(2):291–305CrossRefGoogle Scholar
  46. 46.
    Wiklund G, Akselsen OM, Sørgjerd AJ, Kaplan A (2014) Geometrical aspects of hot cracks in laser-arc hybrid welding. J Laser Appl 26:012003CrossRefGoogle Scholar
  47. 47.
    Gebhardt MO, Gumenyuk A, Rethmeier M (2013) Solidification cracking in laser GMA hybrid welding of thick-walled parts. Sci Technol Weld Join 19(3):209–213CrossRefGoogle Scholar
  48. 48.
    Sokolov M, Salminen A, Kuznetsov M, Tsibulskiy I (2011) Laser welding and weld hardness analysis of thick section S355 structural steel. Mater Des 32(10):5127–5131CrossRefGoogle Scholar
  49. 49.
    Frostevarg J (2016) Comparison of three different arc modes for laser-arc hybrid welding steel. J Laser Appl 28:022407CrossRefGoogle Scholar
  50. 50.
    Victor B, Nagy B, Ream S, Farson D (2009) High brightness hybrid welding of steel. In: 28th International Congress on Applications of Lasers and Electro-Optics (ICALEO). Orlando, USA. doi: 10.2351/1.5061646Google Scholar
  51. 51.
    Frostevarg J, Kaplan A, Lamas J (2014) Comparison of CMT with other arc modes for laser-arc hybrid welding of steel. Weld World 58(5):649–660CrossRefGoogle Scholar
  52. 52.
    Wahba M, Mizutani M, Katayama S (2016) Single pass hybrid laser-arc welding of 25 mm thick square groove butt joints. Mater Des 97(Supplement C):1–6CrossRefGoogle Scholar
  53. 53.
    Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties, 3rd ed. Butterworth-HeinemannGoogle Scholar
  54. 54.
    Babu SS (2004) The mechanism of acicular ferrite in weld deposits. Curr Opinion Solid State Mater Sci 8(3):267–278MathSciNetCrossRefGoogle Scholar
  55. 55.
    Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I (2003) Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior. Metall Mater Trans A 34(11):2505–2516CrossRefGoogle Scholar
  56. 56.
    Ricks RA, Howell PR, Barritte GS (1982) The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci 17(3):732–740CrossRefGoogle Scholar
  57. 57.
    Wan XL, Wang HH, Cheng L, Wu KM (2012) The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals. Mater Charact 67(Supplement C):41–51CrossRefGoogle Scholar
  58. 58.
    Kim KH, Seo JS, Lee C, Kim HJ (2011) Grain size of acicular ferrite in ferritic weld metal. Weld World 55(9):36–40CrossRefGoogle Scholar
  59. 59.
    Yang JR, Bhadeshia HKDH (1991) Acicular ferrite transformation in alloy-steel weld metals. J Mater Sci 26(3):839–845CrossRefGoogle Scholar
  60. 60.
    Akselsen OM, Grong Ø (1992) Prediction of weld metal Charpy V notch toughness. Mater Sci Eng A 159(2):187–192CrossRefGoogle Scholar
  61. 61.
    Tweed JH, Knott JF (1987) Micromechanisms of failure in C Mn weld metals. Acta Metall 35(7):1401–1414CrossRefGoogle Scholar
  62. 62.
    Wang XL, Wang ZQ, Dong LL, Shang CJ, Ma XP, Subramanian SV (2017) New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection. Mater Sci Eng A 704(Supplement C):448–458CrossRefGoogle Scholar
  63. 63.
    Bhadeshia HKDH, Christian JW (1990) Bainite in steels. Metall Trans A 21(3):767–797CrossRefGoogle Scholar
  64. 64.
    Bhadeshia HKDH (2001) Bainite in steels: transformations, microstructure and properties. 2nd edn. IOM CommunicationsGoogle Scholar
  65. 65.
    Bhadeshia HKDH (2015) Bainite in steels: theory and practice, 3rd ed. Maney PublishingGoogle Scholar
  66. 66.
    Tan W, Shin YC (2015) Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel. Comput Mater Sci 98:446–458CrossRefGoogle Scholar
  67. 67.
    Moore PL (2003) Novel method of recording cooling curves during laser & laser/arc hybrid welding. In JOM 11. 2003Google Scholar
  68. 68.
    Turichin G, Kuznetsov M, Sokolov M, Salminen A (2015) Hybrid laser arc welding of X80 steel: influence of welding speed and preheating on the microstructure and mechanical properties. Phys Procedia 78(Supplement C):35–44CrossRefGoogle Scholar
  69. 69.
    Yang Z, Debroy T (1999) Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel. Metall Mater Trans B Process Metall Mater Process Sci 30(3):483–493CrossRefGoogle Scholar
  70. 70.
    Chen Y, Feng J, Li L, Chang S, Ma G (2013) Microstructure and mechanical properties of a thick-section high-strength steel welded joint by novel double-sided hybrid fibre laser-arc welding. Mater Sci Eng A 582:284–293CrossRefGoogle Scholar
  71. 71.
    Babu SS, Bhadeshia HKDH (1990) Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Mater Sci Technol 6(10):1005–1020CrossRefGoogle Scholar
  72. 72.
    Babu SS, David SA (2002) Inclusion formation and microstructure evolution in low alloy steel welds. ISIJ Int 42(12):1344–1353CrossRefGoogle Scholar
  73. 73.
    Zhou Y, Jia T, Zhang X, Liu Z, Misra RDK (2015) Microstructure and toughness of the CGHAZ of an offshore platform steel. J Mater Process Technol 219(Supplement C):314–320CrossRefGoogle Scholar
  74. 74.
    Lambert-Perlade A, Sturel T, Gourgues AF, Besson J, Pineau A (2004) Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel. Metall Mater Trans A 35(3):1039–1053CrossRefGoogle Scholar
  75. 75.
    Frostevarg J (2018) Factors affecting weld root morphology in laser keyhole welding. Opt Lasers Eng 101(Supplement C):89–98CrossRefGoogle Scholar
  76. 76.
    Qin GL, Lei Z, Lin SY (2007) Effects of Nd:YAG laser + pulsed MAG arc hybrid welding parameters on its weld shape. Sci Technol Weld Join 12(1):79–86CrossRefGoogle Scholar
  77. 77.
    Liu Z, Kutsuna M, Xu G (2006) Fiber laser welding of 780MPa high strength steel. In: 25th International Congress on Applications of Lasers and Electro-Optics (ICALEO). LIA, Scottsdale, USA.  https://doi.org/10.2351/1.5060755
  78. 78.
    Vänskä M, Abt F, Weber R, Salminen A, Graf T (2013) Effects of welding parameters onto keyhole geometry for partial penetration laser welding. Phys Procedia 41:199–208CrossRefGoogle Scholar
  79. 79.
    Matsumoto N, Kawahito Y, Nishimotoa K, Katayama S (2017) Effects of laser focusing properties on weldability in high-power fiber laser welding of thick high-strength steel plate. J Laser Appl 29(1):012003CrossRefGoogle Scholar
  80. 80.
    Schaefer M, Kessler S, Fetzer F, Graf T (2017) Influence of the focal position on the melt flow during laser welding of steel. J Laser Appl 29(1):012010CrossRefGoogle Scholar
  81. 81.
    Chen X, Zhang X, Pang S, Hu R, Xiao J (2018) Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding. Opt Lasers Eng 100:239–247CrossRefGoogle Scholar
  82. 82.
    Pang S, Chen W, Zhou J, Liao D (2015) Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy. J Mater Process Technol 217:131–143CrossRefGoogle Scholar
  83. 83.
    Li L, Xia H, Ma G, Peng G (2018) Flow dynamics during single- and dual-spot laser welding with one common keyhole of 321 stainless steel. J Mater Process Technol 255:841–852CrossRefGoogle Scholar
  84. 84.
    Xie J (2002) Dual beam laser welding. Weld J 81(10):223–230Google Scholar
  85. 85.
    Morawiec M, Różański M, Grajcar A, Stano S (2017) Effect of dual beam laser welding on microstructure–property relationships of hot-rolled complex phase steel sheets. Arch Civil Mech Eng 17(1):145–153CrossRefGoogle Scholar
  86. 86.
    Grajcar A, Morawiec M, Różański M, Stano S (2017) Twin-spot laser welding of advanced high-strength multiphase microstructure steel. Opt Laser Technol 92:52–61CrossRefGoogle Scholar
  87. 87.
    Lan L, Kong X, Qiu C, Zhao D (2016) Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints. Mater Des 90(Supplement C):488–498CrossRefGoogle Scholar
  88. 88.
    Grong O (1994) Metallurgical Modelling of Welding (Materials Modelling Series). The Institute of Materials; 2nd edGoogle Scholar
  89. 89.
    Wan XL, Wu KM, Nune KC, Li Y, Cheng L (2015) In situ observation of acicular ferrite formation and grain refinement in simulated heat affected zone of high strength low alloy steel. Sci Technol Weld Join 20(3):254–263CrossRefGoogle Scholar
  90. 90.
    Homma H, Ohkita S, Matsuda S, Yamamoto K (1987) Improvement of HAZ toughness in HSLA steel by introducing finely dispersed Ti-oxide. Weld J 66:301–309Google Scholar
  91. 91.
    Pan Y-T, Lee J-L (1994) Development of TiOx-bearing steels with superior heat-affected zone toughness. Mater Des 15(6):331–338CrossRefGoogle Scholar
  92. 92.
    Zhang D, Terasaki H, Komizo Y-i (2010) In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C–Mn steel. Acta Mater 58(4):1369–1378CrossRefGoogle Scholar
  93. 93.
    Coelho RS, Corpas M, Moreto JA, Jahn A, Standfuß J, Kaysser-Pyzalla A, Pinto H (2013) Induction-assisted laser beam welding of a thermomechanically rolled HSLA S500MC steel: a microstructure and residual stress assessment. Mater Sci Eng A 578(Supplement C):125–133CrossRefGoogle Scholar
  94. 94.
    Jahn A, Krätzsch M, Brenner B (2008) Induction assisted laser beam welding of HSLA steel sheets. In: International Scientific Colloquium Modelling for Electromagnetic Processing:195-200. Hannover, October 27-29Google Scholar
  95. 95.
    Lahdo R, Seffer O, Springer A, Kaierle S, Overmeyer L (2014) GMA-laser hybrid welding of high-strength fine-grain structural steel with an inductive preheating. Phys Procedia 56:637–645CrossRefGoogle Scholar
  96. 96.
    Yurioka H, Suzuki H, Ohshita S, Saito S (1983) Determination of necessary preheating temperature in steel welding. Weld J 62:147–153Google Scholar
  97. 97.
    Fabbro R (2010) Melt pool and keyhole behaviour analysis for deep penetration laser welding. J Phys D Appl Phys 43(44):445501CrossRefGoogle Scholar
  98. 98.
    Fabbro R, Slimani S, Doudet I, Coste F, Briand F (2006) Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding. J Phys D Appl Phys 39(2):394–400CrossRefGoogle Scholar
  99. 99.
    Sugino T, Tsukamoto S, Nakamura T, Arakane G (2005) Fundamental study on welding phenomena in pulsed laser- GMA h ybrid welding. In: 24th International Congress on Applications of Lasers and Electro-Optics (ICALEO). LIA, Miami, USA.  https://doi.org/10.2351/1.5060483
  100. 100.
    Madison JD, Aagesen LK (2012) Quantitative characterization of porosity in laser welds of stainless steel. Scr Mater 67(9):783–786CrossRefGoogle Scholar
  101. 101.
    Kawahito Y, Mizutani M, Katayama S (2007) Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry. J Phys D Appl Phys 40(19):5854–5859CrossRefGoogle Scholar
  102. 102.
    Panwisawas C, Perumal B, Ward RM, Turner N, Turner RP, Brooks JW, Basoalto HC (2017) Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: experimental and modelling. Acta Mater 126:251–263CrossRefGoogle Scholar
  103. 103.
    Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys Procedia 5(Part B):9–17CrossRefGoogle Scholar
  104. 104.
    Fellman A (2008) The effects of some variables on CO2 laser- MAG hybrid welding. PhD Thesis. Lappeenranta University of TechnologyGoogle Scholar
  105. 105.
    Kawahito Y, Matsumoto N, Abe Y, Katayama S (2011) Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy. J Mater Process Technol 211(10):1563–1568CrossRefGoogle Scholar
  106. 106.
    Hu J, Tsai HL (2007) Heat and mass transfer in gas metal arc welding. Part I: the arc. Int J Heat Mass Transf 50(5–6):833–846zbMATHCrossRefGoogle Scholar
  107. 107.
    Hu J, Tsai HL (2007) Heat and mass transfer in gas metal arc welding. Part II: the metal. Int J Heat Mass Transf 50(5–6):808–820CrossRefGoogle Scholar
  108. 108.
    Hu J, Tsai HL (2006) Metal transfer and arc plasma in gas metal arc welding. J Heat Transf 129(8):1025–1035CrossRefGoogle Scholar
  109. 109.
    Bunaziv I, Akselsen OM, Salminen A, Unt A (2016) Fiber laser-MIG hybrid welding of 5mm 5083 aluminum alloy. J Mater Process Technol 233(Supplement C):107–114CrossRefGoogle Scholar
  110. 110.
    Zhao L, Sugino T, Arakane G, Tsukamoto S (2009) Influence of welding parameters on distribution of wire feeding elements in CO2 laser GMA hybrid welding. Sci Technol Weld Join 14(5):457–467CrossRefGoogle Scholar
  111. 111.
    Piili H, Salminen A, Harkko P, Lehtinen J (2008) Study of Phenomenon of Fibre-Laser-Mig/Mag-Hybrid-Welding. In: 27th International Congress on Applications of Lasers and Electro-Optics (ICALEO). LIA, Temecula, USA.  https://doi.org/10.2351/1.5061223
  112. 112.
    Naito Y, Mizutani M, Katayama S (2003) Observation of keyhole behavior and melt flows during laser-arc hybrid welding. In: 22th International Congress on Applications of Lasers and Electro-Optics (ICALEO). LIA, Jacksonville, USA.  https://doi.org/10.2351/1.5059966
  113. 113.
    Murakami T, Shin M-H, Nakata K (2010) Effect of welding direction on weld bead formation in high power fiber laser and MAG arc hybrid welding. Trans JWRI 39(2):175–177Google Scholar
  114. 114.
    Huang L, Wu D, Hua X, Liu S, Jiang Z, Li F, Wang H, Shi S (2018) Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J Manuf Process 31:514–522CrossRefGoogle Scholar
  115. 115.
    Ascari A, Fortunato A, Orazi L, Campana G (2012) The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Opt Laser Technol 44(5):1485–1490CrossRefGoogle Scholar
  116. 116.
    Casalino G, Campanelli SL, Dal Maso U, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminium alloy using a fiber laser. Procedia CIRP 12:151–156CrossRefGoogle Scholar
  117. 117.
    Frostevarg J, Kaplan A (2014) Undercut suppression in laser-arc hybrid welding by melt pool tailoring. J Laser Appl 26(3):031501CrossRefGoogle Scholar
  118. 118.
    Liu LM, Yuan ST, Li CB (2012) Effect of relative location of laser beam and TIG arc in different hybrid welding modes. Sci Technol Weld Join 17(6):441–446CrossRefGoogle Scholar
  119. 119.
    Liu L, Shi J, Hou Z, Song G (2018) Effect of distance between the heat sources on the molten pool stability and burn-through during the pulse laser-GTA hybrid welding process. J Manuf Process 34:697–705CrossRefGoogle Scholar
  120. 120.
    Kang K, Kawahito Y, Gao M, Zeng X (2017) Effects of laser-arc distance on corrosion behavior of single-pass hybrid welded stainless clad steel plate. Mater Des 123:80–88CrossRefGoogle Scholar
  121. 121.
    Huang L, Hua X, Wu D (2018) Relationship between the weld pool convection and metallurgical and mechanical properties in hybrid welding for butt joint of 10-mm-thick aluminum alloy plate. Welding in the World 62(5):895–903CrossRefGoogle Scholar
  122. 122.
    Tsukamoto S, Zhao L, Sugino T, Arakane G (2008) Distribution of wire feeding elements in laser-arc hybrid welding. In: 27th International Congress on Applications of Lasers and Electro-Optics (ICALEO). Laser Institute of America, TemeculaGoogle Scholar
  123. 123.
    Petring D, Fuhrmann C, Wolf N, Poprawe R (2007) Progress in laser-MAG hybrid welding of high-strength steels up to 30 mm thickness. In: 26th International Congress on Applications of Lasers and Electro-Optics (ICALEO). LIA, Orlando, USA: 300-307.Google Scholar
  124. 124.
    Abt F, Boley M, Weber R, Graf T, Popko G, Nau S (2011) Novel X-ray system for in-situ diagnostics of laser based processes—first experimental results. Phys Procedia 12(Part A):761–770CrossRefGoogle Scholar
  125. 125.
    Matsunawa A, Kim J-D, Seto N, Mizutani M, Katayama S (1998) Dynamics of keyhole and molten pool in laser welding. J Laser Appl 10(6):247–254CrossRefGoogle Scholar
  126. 126.
    Zhang Y, Lin Q, Yin X, Li S, Deng J (2018) Experimental research on the dynamic behaviors of the keyhole and molten pool in laser deep-penetration welding. J Phys D Appl Phys 51(14):145602CrossRefGoogle Scholar
  127. 127.
    Wang H, Nakanishi M, Kawahito Y (2018) Dynamic balance of heat and mass in high power density laser welding. Opt Express 26(5):6392–6399CrossRefGoogle Scholar
  128. 128.
    Zhang M, Chen G, Zhou Y, Li S (2013) Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser. Opt Express 21(17):19997–20004CrossRefGoogle Scholar
  129. 129.
    Zhang LJ, Zhang JX, Gumenyuk A, Rethmeier M, Na SJ (2014) Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser. J Mater Process Technol 214(8):1710–1720CrossRefGoogle Scholar
  130. 130.
    Ning J, Zhang L-J, Na S-J, Yin X-Q, Niu J, Zhang J-X, Wang H-R (2017) Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd: YAG laser/TIG hybrid welding. Int J Adv Manuf Technol 91(1):1129–1143CrossRefGoogle Scholar
  131. 131.
    Cho W-I, Na S-J, Cho M-H, Lee J-S (2010) Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding. Comput Mater Sci 49(4):792–800CrossRefGoogle Scholar
  132. 132.
    Cho D-W, Cho W-I, Na S-J (2014) Modeling and simulation of arc: laser and hybrid welding process. J Manuf Process 16(1):26–55CrossRefGoogle Scholar
  133. 133.
    Cho W-I, Na S-J, Thomy C, Vollertsen F (2012) Numerical simulation of molten pool dynamics in high power disk laser welding. J Mater Process Technol 212(1):262–275CrossRefGoogle Scholar
  134. 134.
    Otto A, Schmidt M (2010) Towards a universal numerical simulation model for laser material processing. Phys Procedia 5:35–46CrossRefGoogle Scholar
  135. 135.
    Chen X, Pang S, Shao X, Wang C, Xiao J, Jiang P (2017) Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel. Opt Lasers Eng 91:196–205CrossRefGoogle Scholar
  136. 136.
    Otto A, Koch H, Vazquez RG (2012) Multiphysical simulation of laser material processing. Phys Procedia 39:843–852CrossRefGoogle Scholar
  137. 137.
    Otto A, Koch H, Leitz K-H, Schmidt M (2011) Numerical simulations - a versatile approach for better understanding dynamics in laser material processing. Phys Procedia 12:11–20CrossRefGoogle Scholar
  138. 138.
    Pang S, Chen X, Zhou J, Shao X, Wang C (2015) 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect. Opt Lasers Eng 74:47–58CrossRefGoogle Scholar
  139. 139.
    Wu CS, Zhang HT, Chen J (2017) Numerical simulation of keyhole behaviors and fluid dynamics in laser–gas metal arc hybrid welding of ferrite stainless steel plates. J Manuf Process 25:235–245CrossRefGoogle Scholar
  140. 140.
    Pang S, Chen X, Li W, Shao X, Gong S (2016) Efficient multiple time scale method for modeling compressible vapor plume dynamics inside transient keyhole during fiber laser welding. Opt Laser Technol 77:203–214CrossRefGoogle Scholar
  141. 141.
    Courtois M, Carin M, Le Masson P, Gaied S, Balabane M (2016) Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding. J Phys D Appl Phys 49(15):155503 (13 pp)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Ivan Bunaziv
    • 1
    Email author
  • Odd M. Akselsen
    • 1
    • 2
  • Jan Frostevarg
    • 3
  • Alexander F. H. Kaplan
    • 3
  1. 1.Department of Mechanical and Industrial EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.SINTEF IndustryTrondheimNorway
  3. 3.Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden

Personalised recommendations