Advertisement

Vibration response analysis on stainless steel thin plate weldments

  • Vanessa Bawden de Paula MacanhanEmail author
  • Edmilson Otoni Correa
  • Antonio Marcos Gonçalves de Lima
  • Jose Tadeu da Silva
ORIGINAL ARTICLE
  • 23 Downloads

Abstract

Dynamic responses of welded thin plates are influenced by welding residual stress, and improving this phenomenon understanding would turn possible to develop a new residual stress detection method. This research investigates natural frequency variations in welded thin plates. Experimental analysis was conducted for eight AISI316LSS plates, 6.30-mm thickness, bead on plate (BOP) and butt welded. Modal variations, comparing natural frequencies before and after welding, are negative, due to longitudinal compressive residual stress predomination. It was detected that higher variations occur for the first torsional mode and the variation for the longitudinal flexural mode is around null. It was observed that BOP welds do not always result in higher modal variations for higher heat inputs, as it occurs with butt welds. Moreover, it shows that, for the same heat inputs, modal variations were higher for butt welds than BOP tests. Numerical analysis was also performed, and theoretical results were compared to experiments.

Keywords

Welded plates Dynamic behaviour Vibration response Natural frequency variation Welding residual stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This study is financially supported by FAPEMIG, CAPES and CNPq [grant number 310071/2014-3].

References

  1. 1.
    Chen BQ, Soares CG (2016) Numerical and experimental investigation on the weld-induced deformation and residual stress in stiffened plates with brackets. Int J Adv Manuf Technol 86:2723–2733CrossRefGoogle Scholar
  2. 2.
    Pu X, Zhang C, Li S, Deng D (2017) Simulating welding residual stress and deformation in a multi-pass butt-welded joint considering balance between computing time and prediction accurancy. Int J Adv Manuf Technol 93:2215–2226CrossRefGoogle Scholar
  3. 3.
    Xia J, Jin H (2017) Numerical study of welding simulation and residual stress on butt welding of dissimilar thickness of austenitic stainless steel. Int J Adv Manuf Technol 91:227–235CrossRefGoogle Scholar
  4. 4.
    Kaldas MM, Dickinson SM (1981) Vibration and buckling calculations for rectangular plates subject to complicated in-plane stress distributions by using numerical integration in a Rayleigh-Ritz analysis. J Sound Vib 75(2):151–162CrossRefzbMATHGoogle Scholar
  5. 5.
    Kaldas MM, Dickinson SM (1981) The flexural vibration of welded rectangular plates. J Sound Vib 75(2):163–178CrossRefGoogle Scholar
  6. 6.
    Vieira Jr. AB, Rade DA, Cunha Jr. SS (2002) Avaliação experimental da influência das tensões residuais sobre as respostas dinâmicas de placas soldadas. Proc. II National Congresso of Mechanical Engineering, João Pessoa, PB, Brazil. (in portuguese)Google Scholar
  7. 7.
    Thomas M, Champliaud H (2005) Effect of residual stresses on modal parameters of welded structures. Proc. 23rd CMVA Seminar, Edmonton, CanadaGoogle Scholar
  8. 8.
    Bezerra AC, Vieira LC, Rade DA, Scotti A (2008) On the influence of welding residual stresses on the dynamic behaviour of structures. Shock Vib 15:447–458CrossRefGoogle Scholar
  9. 9.
    Bezerra AC (2006) Simulação numérica da soldagem com aplicação à caracterização do comportamento dinâmico de estruturas soldadas. (Tese em Engenharia Mecânica) Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia, Brazil. (in portuguese)Google Scholar
  10. 10.
    Viera AB Jr, Rade DA, Scotti A (2006) Identification of welding residual stresses in rectangular plates using vibration responses. Inverse Probl Sci Eng 14(3):131–331Google Scholar
  11. 11.
    Charette O (2011) Effet des contraintes résiduelles sur les parameters modaux dans les structures soudées. (Maitrise em Génie Mécanique) École de Technologie Supérieure, Université du Quebec, Montreal, CanadaGoogle Scholar
  12. 12.
    Morin O (2006) Calcul des constraints résiduelles due sau soudage par la méthode des éléments finis. (Maitrise em Génie Mécanique) École de Technologie Supérieure, Université du Quebec, Montreal, CanadaGoogle Scholar
  13. 13.
    Armentani E, Esposito R, Sepe R (2007) The effect of thermal properties and weld efficiency on residual stresses in welding. JAMME 20:319–322Google Scholar
  14. 14.
    Capriccioli A, Frosi P (2009) Multipurpose ANSYS FE procedure for welding processes simulation. Fusion Eng Des 84:546–553.  https://doi.org/10.1016/j.fuengdes.2009.01.039 CrossRefGoogle Scholar
  15. 15.
    Stamenkovic D, Vasovic I (2009) Finite element analysis of residual stress in butt welding two similar plates. Sci Tech Rev LIX 1:57–60Google Scholar
  16. 16.
    Vemanaboina H, Akella S, Buddu RK (2014) Welding process simulation model for temperature and residual stress analysis. Proc. 3rd international conference on mat. Processing and Characterization 6:1539–1546.  https://doi.org/10.1016/j.mspro.2014.07.135
  17. 17.
    Deng D, Murakawa H (2008) Prediction of welding distortion and residual stress in a thin plate butt-welded joint. Comput Mater Sci 43:353–365.  https://doi.org/10.1016/j.commatsci.2007.12.006 CrossRefGoogle Scholar
  18. 18.
    Zhu XK, Chao YJ (2002) Effects of temperature-dependent material properties on welding simulation. Comput Struct 80:967–976CrossRefGoogle Scholar
  19. 19.
    Malik MA, Qureshi ME, Dar NU (2007) Numerical simulation of arc welding investigation of various process and heat source parameters. Proc FEMS:127–142, Taxila, PakistanGoogle Scholar
  20. 20.
    Fachinotti VD, Cardona A (2008) Semi-analytical solution of the thermal field induced by a moving doblue-ellipsoidal welding heat source in a semi-infinite body. Proc. Mecánica Computacional XXVII:1519–1530, San Luis, ArgentinaGoogle Scholar
  21. 21.
    Lazic VN, Ivanovic IB, Secmak AS, Rudolf R, Lazic MM, Radakovic ZJ (2014) Numerical analysis of temperature field during hardfacing process and comparison with experimental results. Therm Sci 18(1):113–120.  https://doi.org/10.2298/TSCI130117177L CrossRefGoogle Scholar
  22. 22.
    Darmadi D, Tieu AK, Norrish J (2012) A validated thermal model of bead-on-plate welding. Heat Mass Transf 48:1219–1230.  https://doi.org/10.1007/s00231-012-0970-5 CrossRefGoogle Scholar
  23. 23.
    Chen B, Hashemzadeh M, Soares CG (2014) Numerical and experimental studies on temperature and distortion patterns in butt-welded plates. Int J Adv Manuf Technol 72:1121–1131.  https://doi.org/10.1007/s00170-014-5740-8 CrossRefGoogle Scholar
  24. 24.
    Bryan JJ (1973) Analysis of two dimensional thermal strains and metal movement during welding (Master of Science in Naval Architecture and Marine Engineering) MIT – Massachusetts Institute Technology, USAGoogle Scholar
  25. 25.
    Depradeux L (2004) Simulation numérique du soudage – acier 316L: validation surcas tests de complexité croissante. (These em Génie Civil) Ecole Doctorale des Sciences de L’Ingénieur de Lyon, Lyon, FranceGoogle Scholar
  26. 26.
    Goldak J, Asadi M (2011) Computational weld mechanics and optimization of welding procedures, welds, and welded structures. T JWRI, WSE2011Google Scholar
  27. 27.
    Soul F, Hamdy N (2012) Numerical simulation of residual stress and strain behaviour after temperature modification. In: Kovacevic R.: ‘Welding Processes’.  https://doi.org/10.5772/47745

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Vanessa Bawden de Paula Macanhan
    • 1
    • 2
    Email author
  • Edmilson Otoni Correa
    • 2
  • Antonio Marcos Gonçalves de Lima
    • 3
  • Jose Tadeu da Silva
    • 1
  1. 1.National Laboratory of Astrophysics, LNAItajubáBrazil
  2. 2.Federal University of Itajuba, UNIFEIItajubáBrazil
  3. 3.Federal University of Uberlândia, UFUUberlândiaBrazil

Personalised recommendations