Advertisement

Inverse identification of Johnson-Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements

  • Jinqiang NingEmail author
  • Steven Y. Liang
ORIGINAL ARTICLE
  • 8 Downloads

Abstract

This paper presents an improved inverse identification method for Johnson-Cook model constants (J-C constants) using force and temperature data. Nowadays, J-C constants are identified by either experimental approaches with the complex and costly system, numerical approaches with high computational cost, or analytical approaches with available material properties. The previous model is developed based on a modified chip formation model and an exhaustive search method using temperature and force measurements. The current model is improved by replacing the exhaustive search method with an iterative gradient search method based on the Kalman filter algorithm. The modified chip formation model is used to predict machining forces. The iterative gradient search method is used to determine the J-C constants when the difference between predicted forces and experimental forces reached an acceptable low value. AISI 1045 steel and Al6082-T6 aluminum are chosen to test the proposed methodology. The determined J-C constants are validated by comparing to the documented values in the literature, which were obtained from Split-Hopkinson Pressure Bar tests and validated in published works. Good agreements are observed between identified J-C constants and documented values with an improved computational efficiency. The cutting temperatures are used as inputs in the modified chip formation model. Therefore, the workpiece material properties are not required to predict temperatures and forces, and thus are not required for determining J-C constants. Considering the modified chip formation model using temperatures as inputs, and the effective iterative gradient search method, this method has advantages of less mathematical complexity and high computational efficiency.

Keywords

Inverse identification Johnson-Cook model constants Modified chip formation model Iterative gradient search Kalman filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported by the US National Science Foundation under Grant CMMI-1404827.

References

  1. 1.
    Ning J, Liang SY (2018) Prediction of temperature distribution in orthogonal machining based on the mechanics of the cutting process using a constitutive model. J Manuf Mater Process 2(2):37.  https://doi.org/10.3390/jmmp2020037 Google Scholar
  2. 2.
    Ning J, Liang SY (2018) Evaluation of an analytical model in the prediction of machining temperature of AISI 1045 steel and AISI 4340 steel. J Manuf Mater Process 2(4):74.  https://doi.org/10.3390/jmmp2040074 Google Scholar
  3. 3.
    Ning J, Nguyen V, Liang SY (2018) Analytical modeling of machining forces of ultra-fine-grained titanium. Int J Adv Manuf Technol:1–10.  https://doi.org/10.1007/s00170-018-2889-6
  4. 4.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48.  https://doi.org/10.1016/0013-7944(85)90052-9 CrossRefGoogle Scholar
  5. 5.
    Majzoobi GH, Freshteh-Saniee F, Khosroshahi SF, Mohammadloo HB (2010) Determination of materials parameters under dynamic loading. Part I: experiments and simulations. Comput Mater Sci 49(2):192–200.  https://doi.org/10.1016/j.commatsci.2010.03.054 CrossRefGoogle Scholar
  6. 6.
    Dorogoy A, Rittel D (2009) Determination of the Johnson–Cook material parameters using the SCS specimen. Exp Mech 49(6):881–885.  https://doi.org/10.1007/s11340-008-9201-x CrossRefGoogle Scholar
  7. 7.
    Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast 20(12):2233–2248.  https://doi.org/10.1016/j.ijplas.2003.06.005 CrossRefzbMATHGoogle Scholar
  8. 8.
    Milani AS, Dabboussi W, Nemes JA, Abeyaratne RC (2009) An improved multi-objective identification of Johnson–Cook material parameters. Int J Impact Eng 36(2):294–302.  https://doi.org/10.1016/j.ijimpeng.2008.02.003 CrossRefGoogle Scholar
  9. 9.
    Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc London Sect B 62(11):676–700.  https://doi.org/10.1088/0370-1301/62/11/302 CrossRefGoogle Scholar
  10. 10.
    Shrot A, Bäker M (2012) Determination of Johnson–Cook parameters from machining simulations. Comput Mater Sci 52(1):298–304.  https://doi.org/10.1016/j.commatsci.2011.07.035 CrossRefGoogle Scholar
  11. 11.
    Umbrello D, M’saoubi R, Outeiro JC (2017) The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47(3–4):462–470.  https://doi.org/10.1016/j.ijmachtools.2006.06.006 Google Scholar
  12. 12.
    Agmell M, Ahadi A, Ståhl JE (2014) Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech Mater 77:43–51.  https://doi.org/10.1016/j.mechmat.2014.07.005 CrossRefGoogle Scholar
  13. 13.
    Tounsi N, Vincenti J, Otho A, Elbestawi MA (2002) From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. Int J Mach Tools Manuf 42(12):1373–1383.  https://doi.org/10.1016/S0890-6955(02)00046-9 CrossRefGoogle Scholar
  14. 14.
    Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Process 22(5):659–667.  https://doi.org/10.1080/10426910701323631 CrossRefGoogle Scholar
  15. 15.
    Naik P, Naik A (2015) Determination of flow stress constants by Oxley’s theory. International Journal of Latest Technology in Engineering, Management & Applied Science 4(10):110–116 DOI is unavailableGoogle Scholar
  16. 16.
    Denkena B, Grove T, Dittrich MA, Niederwestberg D, Lahres M (2015) Inverse determination of constitutive equations and cutting force modelling for complex tools using Oxley’s predictive machining theory. Procedia CIRP 31:405–410.  https://doi.org/10.1016/j.procir.2015.03.012 CrossRefGoogle Scholar
  17. 17.
    Ning J, Liang SY (2018) Model-driven determination of Johnson-Cook material constants using temperature and force measurements. Int J Adv Manuf Technol 97(1–4):1053–1060.  https://doi.org/10.1007/s00170-018-2022-x CrossRefGoogle Scholar
  18. 18.
    Ning J, Nguyen V, Huang Y, Hartwig KT, Liang SY (2018) Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int J Adv Manuf Technol 99(5–8):1131–1140.  https://doi.org/10.1007/s00170-018-2508-6 CrossRefGoogle Scholar
  19. 19.
    Jaspers SP, Dautzenberg JH (2002) Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J Mater Process Technol 122(2–3):322–330.  https://doi.org/10.1016/S0924-0136(01)01228-6 CrossRefGoogle Scholar
  20. 20.
    Adibi-Sedeh AH, Madhavan V, Bahr B (2003) Extension of Oxley’s analysis of machining to use different material models. J Manuf Sci Eng 125(4):656–666.  https://doi.org/10.1115/1.1617287 CrossRefGoogle Scholar
  21. 21.
    Lin YC, Chen XM, Liu G (2010) A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mater Sci Eng A 527(26):6980–6986.  https://doi.org/10.1016/j.msea.2010.07.061 CrossRefGoogle Scholar
  22. 22.
    Pan Z, Shih DS, Tabei A, Garmestani H, Liang SY (2017) Modeling of Ti-6Al-4V machining force considering material microstructure evolution. Int J Adv Manuf Technol 91(5–8):2673–2680.  https://doi.org/10.1007/s00170-016-9964-7 CrossRefGoogle Scholar
  23. 23.
    Pan Z, Shih DS, Garmestani H, Liang SY (2017) Residual stress prediction for turning of Ti-6Al-4V considering the microstructure evolution. Proc Inst Mech Eng B J Eng Manuf:109–117.  https://doi.org/10.1177/0954405417712551
  24. 24.
    Oxley PL, Welsh MJ. (1963). Calculating the shear angle in orthogonal metal cutting from fundamental stress-strain-strain rate properties of the work material. In Proceedings of the Fourth International Conference on Machine Tool Design and Research Conference, 73–86. DOI is unavailableGoogle Scholar
  25. 25.
    Oxley PLB (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood Ltd., EnglandGoogle Scholar
  26. 26.
    Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic Eng 83(1):95–108.  https://doi.org/10.1115/1.3658902 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ivester RW, Kennedy M, Davies M, Stevenson R, Thiele J, Furness R, Athavale S (2000) Assessment of machining models: progress report. Mach Sci Technol 4(3):511–538.  https://doi.org/10.1080/10940340008945720 CrossRefGoogle Scholar
  28. 28.
    Aydın M (2016) Cutting temperature analysis considering the improved Oxley’s predictive machining theory. J Braz Soc Mech Sci Eng 38(8):2435–2448.  https://doi.org/10.1007/s40430-016-0514-x CrossRefGoogle Scholar
  29. 29.
    Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process—part I: predictions of tool forces, stresses, and temperature distributions. J Manuf Sci Eng 128(2):435–444.  https://doi.org/10.1115/1.2162590 CrossRefGoogle Scholar
  30. 30.
    Jaspers SP, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Technol 121(1):123–135.  https://doi.org/10.1016/S0924-0136(01)01227-4 CrossRefGoogle Scholar
  31. 31.
    Mia M, Dhar NR (2016) Response surface and neural network based predictive models of cutting temperature in hard turning. J Adv Res 7(6):1035–1044.  https://doi.org/10.1016/j.jare.2016.05.004 CrossRefGoogle Scholar
  32. 32.
    Özel T, Zeren E. (2005). Finite element modeling of stresses induced by high speed machining with round edge cutting tools. In ASME 2005 International Mechanical Engineering Congress and Exposition, 1279–1287. American Society of Mechanical Engineers.  https://doi.org/10.1115/IMECE2005-81046

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations