Advertisement

Evolutionary optimization of jet lag in the abrasive water jet machining

  • Marin GostimirovicEmail author
  • Vladimir Pucovsky
  • Milenko Sekulic
  • Dragan Rodic
  • Vlastimir Pejic
ORIGINAL ARTICLE
  • 60 Downloads

Abstract

One of the main characteristics of abrasive water jet machining (AWJM) is jet lag effect. In this case, by controlling basic machining parameters (water pressure, cutting speed, and abrasive mass flow rate), evolutionary algorithm is used for modeling and optimization of trajectory curvature in AWJM process. Based on experimental investigation, genetic programming was used as the main exploration tool for generating function of the jet lag depending on the machining conditions and as a potential way in the AWJM simulation. Judging by the output, the genetic programming yielded impressive results and has proven to be very practical for modeling of the abrasive water jet trajectory curvature. In the sequel, the optimization of AWJM process is used approximate optimal control problem which leads to the best solution for the jet lag considering the machining parameters. With this action, we can say that different access has been made to find precise dependence of AWJM process parameters with the trajectory curvature to obtain high productivity and quality results.

Keywords

AWJM process Trajectory curvature Modeling Genetic programming Optimal control problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

The paper is the result of the research within the project TR 35015 financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

References

  1. 1.
    Svalina I, Simunovic G, Simunovic K (2013) Machined surface roughness prediction using adaptive neurofuzzy inference system. Appl Artif Intell 27(9):803–817CrossRefGoogle Scholar
  2. 2.
    Hlavac LM (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 209(8):4154–4161CrossRefGoogle Scholar
  3. 3.
    Ma C, Deam RT (2006) A correlation for predicting the kerf profile from abrasive water jet cutting. Exp Thermal Fluid Sci 30(4):337–343CrossRefGoogle Scholar
  4. 4.
    Deam RT, Lemma E, Ahmed DH (2004) Modelling of the abrasive water jet cutting process. Wear 257(9–10):877–891CrossRefGoogle Scholar
  5. 5.
    Hlavac LM, Hlavacova IM, Gembalova L, Kalicinsky J, Fabian S, Mestanek J, Kmec J, Madr V (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Process Technol 209(20):6190–6195CrossRefGoogle Scholar
  6. 6.
    Vikram G, Babu NR (2002) Modelling and analysis of abrasive water jet cut surface topography. Int J Mach Tools Manuf 42(12):1345–1354CrossRefGoogle Scholar
  7. 7.
    Selvakumar G, Prakash SSR, Lenin N (2018) Experimental study on abrasive water jet machining of AA5083 in a range of thicknesses. Int J Abras Technol 8(3):218–231CrossRefGoogle Scholar
  8. 8.
    Miao X, Qiang Z, Wu M, Song L, Ye F (2018) Research on quality improvement of the cross section cut by abrasive water jet based on secondary cutting. J Int J Adv Manuf Technol 97(1–4):71–80CrossRefGoogle Scholar
  9. 9.
    Sutowski P, Sutowska M, Kapłonek W (2017) The use of high-frequency acoustic emission analysis for in-process assessment of the surface quality of aluminium alloy 5251 in abrasive waterjet machining. Proc Inst Mech Eng B J Eng Manuf 232:2547–2565.  https://doi.org/10.1177/0954405417703428 CrossRefGoogle Scholar
  10. 10.
    Perzel V, Hreha P, Hloch S, Tozan H, Valicek J (2012) Vibration emission as a potential source of information for abrasive waterjet quality process control. J Int J Adv Manuf Technol 61(1–4):285–294CrossRefGoogle Scholar
  11. 11.
    Mokhtar N, Gebremariam MA, Zohari H, Azhari A (2018) Analysis of acoustic emission during abrasive waterjet machining of sheet metals. IOP Conf Series: Mat Sci Eng 342(1):012107.  https://doi.org/10.1088/1757-899X/342/1/012107 CrossRefGoogle Scholar
  12. 12.
    Wenjun G, Jianming W, Na G (2011) Numerical simulation for abrasive water jet machining based on ALE algorithm. Int J Adv Manuf Technol 53(1–4):247–253CrossRefGoogle Scholar
  13. 13.
    Orbanic H, Junkar M (2004) Simulation of abrasive water jet cutting process: part 2. Model Simul Mater Sci Eng 12(6):1171–1184CrossRefGoogle Scholar
  14. 14.
    Gudimetla P, Yarlagadda PKDV (2007) Finite element analysis of the interaction between an AWJ particle and a polycrystalline alumina ceramic. J Achiev Mater Manuf Eng 23(1):7–14Google Scholar
  15. 15.
    Krawczyk B, Markowska-Kaczmar U, Kwasnicka H (2014) Recent advances in applied computational intelligence. Appl Artif Intell 28(3):217–219CrossRefGoogle Scholar
  16. 16.
    Kök M, Kanca E, Eyercioğlu O (2011) Prediction of surface roughness in abrasive waterjet machining of particle reinforced MMCs using genetic expression programming. Int J Adv Manuf Technol 55(9–12):955–968CrossRefGoogle Scholar
  17. 17.
    Parikh PJ, Lam SJ (2009) Parameter estimation for abrasive water jet machining process using neural networks. Int J Adv Manuf Technol 40(5–6):497–502CrossRefGoogle Scholar
  18. 18.
    Yang G (2013) Forecast surface quality of abrasive water jet cutting based on neural network. J Theor Appl Inform Tech 47(3):1087–1091Google Scholar
  19. 19.
    Ergur HS, Oysal Y (2013) Estimation of cutting speed in abrasive water jet using an adaptive wavelet neural network. J Intell Manuf 26(2):403–413CrossRefGoogle Scholar
  20. 20.
    Azlan MZ, Habibollah H, Safian S (2011) Genetic algorithm and simulated annealing to estimate optimal process parameters of the abrasive waterjet machining. Eng Comput 27:251–259CrossRefGoogle Scholar
  21. 21.
    Yusup N, Sarkheyli A, Zain AM, Hashim SZM, Ithnin I (2013) Estimation of optimal machining control parameters using artificial bee colony. J Intell Manuf 25(6):1463–1472CrossRefGoogle Scholar
  22. 22.
    Gostimirovic M, Pucovsky V, Sekulic M, Radovanovic M, Madic M (2018) Evolutionary multi-objective optimization of energy efficiency in electrical discharge machining. J Mech Sci Technol 32(10):4775–4785CrossRefGoogle Scholar
  23. 23.
    Shukla R, Singh D (2012) Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm Evol Comput 32:167–183CrossRefGoogle Scholar
  24. 24.
    Aultrin KSJ, Anand MD, Jose PJ (2012) Modelling the cutting process and cutting performance in abrasive water jet machining using genetic-fuzzy approach. Procedia Eng 38:4013–4020CrossRefGoogle Scholar
  25. 25.
    Chakravarthy SP, Babu NR (2000) A hybrid approach for selection of optimal process parameters in abrasive water jet cutting. Proc Inst Mech Eng B J Eng Manuf 214:781–791CrossRefGoogle Scholar
  26. 26.
    Chakraborty S, Mitra A (2018) Parametric optimization of abrasive water-jet machining processes using grey wolf optimizer. Mater Manuf Process 33(13):1471–1482CrossRefGoogle Scholar
  27. 27.
    Qiang Z, Miao X, Wu M, Sawhney R (2018) Optimization of abrasive waterjet machining using multi-objective cuckoo search algorithm. J Int J Adv Manuf Technol 99(5–8):1257–1266CrossRefGoogle Scholar
  28. 28.
    Hashish M (1989) Model for abrasive-waterjets (AWJ) machining. J Eng Mater Technol 111(2):154–162CrossRefGoogle Scholar
  29. 29.
    Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, LondonCrossRefzbMATHGoogle Scholar
  30. 30.
    Finnie I (1960) Erosion of surfaces by solid particles. Wear 3(2):87–103CrossRefGoogle Scholar
  31. 31.
    Hashish M (1984) A modeling study of metal cutting with abrasive waterjets. J Eng Mater Technol 106(1):88–100CrossRefGoogle Scholar
  32. 32.
    Hashish M (1993) Comparative evaluation of abrasive liquid jet machining systems. J Eng Ind 115(1):44–50CrossRefGoogle Scholar
  33. 33.
    Bitter J (1966) A study of erosion phenomena part I. Wear 6(1):5–21CrossRefGoogle Scholar
  34. 34.
    Zeng J, Kim TJ, Wallace RJ (1992) Quantitative evaluation of machinability in abrasive waterjet machining. ASME PED 58:169–179Google Scholar
  35. 35.
    Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193(2):207–217CrossRefGoogle Scholar
  36. 36.
    Wenjun G, Jianming W, Na G (2002) Modelling and analysis of abrasive water jet cut surface topography. Int J Machine Tools Manufact 42(12):1345–1354CrossRefGoogle Scholar
  37. 37.
    Wang J (1999) Abrasive waterjet machining of polymer matrix composites: cutting performance, erosive analysis and predictive models. Int J Adv Manuf Technol 15:757–768CrossRefGoogle Scholar
  38. 38.
    Lemma E, Chen L, Siores E, Wang J (2002) Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique. Int J Machine Tools Manufact 42(7):781–789CrossRefGoogle Scholar
  39. 39.
    Madic M, Radovanovic M (2013) Application of RCGA-ANN approach for modeling kerf width and surface roughness in CO2 laser cutting of mild steel. J Braz Soc Mech Sci 35(2):103–110CrossRefGoogle Scholar
  40. 40.
    Kovac P, Rodic D, Pucovsky V, Savkovic B, Gostimirovic M (2013) Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. J Intell Manuf 24(4):755–762CrossRefGoogle Scholar
  41. 41.
    Hloch S, Valicek J, Samardzic I, Kozak D, Mullerova J, Gombar M (2007) Experimental study of surface topography created by abrasive waterjet cutting. Strojarstvo 49(4):303–309Google Scholar
  42. 42.
    Valicek J, Hloch S, Kozak D (2009) Surface geometric parameters proposal for the advanced control of abrasive waterjet technology. Int J Adv Manuf Technol 41(3–4):323–328CrossRefGoogle Scholar
  43. 43.
    Hashish M (1992) On the modeling of surface waviness produced by abrasive-waterjets. Fluid Mec A 13:17–34Google Scholar
  44. 44.
    Simon D (2013) Evolutionary optimization algorithms. John Wiley & Sons, HobokenGoogle Scholar
  45. 45.
    Rao SS (2009) Engineering optimization: theory and practice. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  46. 46.
    Koza JR (1988) Genetic programming. MIT Press, LondonGoogle Scholar
  47. 47.
    Hull DG (2003) Optimal control theory for applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  48. 48.
    Kelley CT (1999) Iterative methods for optimization. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  49. 49.
    Gostimirovic M, Kovac P, Sekulic M (2011) An inverse heat transfer problem for optimization of the thermal process in machining. Sadhana-Acad P Eng S 36(4):489–504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Marin Gostimirovic
    • 1
    Email author
  • Vladimir Pucovsky
    • 1
  • Milenko Sekulic
    • 1
  • Dragan Rodic
    • 1
  • Vlastimir Pejic
    • 2
  1. 1.Faculty of Technical Sciences, Department for Production EngineeringUniversity of Novi SadNovi SadSerbia
  2. 2.College of Business and Technical EducationDobojBosnia and Herzegovina

Personalised recommendations