Investigating the effects of external magnetic field on machining characteristics of electrical discharge machining process, numerically and experimentally

  • Mohammad Reza ShabgardEmail author
  • Ahad Gholipoor
  • Mousa Mohammadpourfard


Application of external magnetic field in electrical discharge machining is one of the methods to increase this process capability and decrease its limitations. In the present study, a single discharge in magnetic field-assisted electrical discharge machining has simulated using finite element method in order to obtain the temperature distribution and generated crater dimensions on the workpiece surface. A new mathematical model for plasma channel radius was also developed and used at simulation stage. Regarding good agreement between recast layer thickness obtained by numerical and experimental methods with maximum error of 8.8%, the effects of applying external magnetic fields on plasma flushing efficiency and recast layer thickness were found numerically and experimentally. Also the influences of pulse current and pulse on-time on dimensions of generated craters at magnetic field-assisted EDM were studied numerically. The results showed the positive effects of application of external magnetic field in EDM process on increasing plasma flushing efficiency and decreasing recast layer thickness.


Electrical discharge machining External magnetic field Numerical analysis Mathematical modeling Plasma flushing efficiency Recast layer thickness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang GW, Yan BH, Hsu RT (2002) Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. Int J Mach Tools Manuf 42:575–583CrossRefGoogle Scholar
  2. 2.
    Yamaguchi H, Shinmura T (2004) Internal finishing process for alumina ceramic components by a magnetic field-assisted finishing process. Precis Eng 28:135–142CrossRefGoogle Scholar
  3. 3.
    Kim JD (2003) Polishing of ultra-clean inner surfaces using magnetic force. Int J Adv Manuf Technol 21:91–97CrossRefGoogle Scholar
  4. 4.
    Teimouri R, Baseri H (2012) Study of tool wear and overcut in EDM process with rotary tool and magnetic field. Advances in Tribology 2012(Article ID 895918):8Google Scholar
  5. 5.
    De Bruijn HE, Delft TH, Pekelharing AJ (1978) Effect of a magnetic field on the gap cleaning in EDM. Annals of CIRP 27:93–95Google Scholar
  6. 6.
    Teimouri R, Baseri H (2012) Effects of magnetic field and rotary tool on EDM performance. J Manuf Process 14:316–322CrossRefGoogle Scholar
  7. 7.
    Zhao B, Xu X, Cai G, Kang R (2009) Experimental and mechanism research on EDM combined with magnetic field. Key Eng Mater 416:337–341CrossRefGoogle Scholar
  8. 8.
    Lin YC, Lee HS (2009) Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int J Adv Manuf Technol 42:1052–1064CrossRefGoogle Scholar
  9. 9.
    Lin YC, Chen YF, Wang DA, Lee HS (2009) Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. J Mater Process Technol 209:3374–3383CrossRefGoogle Scholar
  10. 10.
    Govindan P, Gupta A, Joshi SS, Malshe A, Rajurkar KP (2013) Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. J Mater Process Technol 213:1048–1058CrossRefGoogle Scholar
  11. 11.
    Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP annals- manufacturing. Technology 60:239–242Google Scholar
  12. 12.
    Cao MR, Geng XD (2011) Process research on high-speed small hole drilling by EDM combined with magnetic field and water dispersant. Adv Mater Res 189:269–272CrossRefGoogle Scholar
  13. 13.
    Heinz K, Surla V, Kapoor SG, DeVor RE (2011) An investigation of magnetic-field-assisted material removal in micro EDM for nonmagnetic materials. J Manuf Sci Eng 133(2):9 021002CrossRefGoogle Scholar
  14. 14.
    Lee HT, Yur JP (2000) Characteristic analysis on EDMed surfaces using Taguchi method approach. Mater Manuf Process 15(6):781–806CrossRefGoogle Scholar
  15. 15.
    Lee HT (1996) Influence of EDM process parameters on surface defects and roughness. Chin J Mater Sci 28(4):270–278Google Scholar
  16. 16.
    Shabgard MR, Gholipoor A, Mohammadpourfard M (2018) Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process. Int J Adv Manuf Technol 96 (5): 2657–2669Google Scholar
  17. 17.
    Van Dijck F, Dutre W (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Phys D Appl Phys 7(6):899–910CrossRefGoogle Scholar
  18. 18.
    Allen P, Chen X (2007) Process simulation of micro electro-discharge machining on molybdenum. J Mater Process Technol 186(1):346–355CrossRefGoogle Scholar
  19. 19.
    Murali MS, Yeo SH (2005) Process simulation and residual stress estimation of micro-electro discharge machining using finite element method. Jpn J Appl Phys 44:52–54CrossRefGoogle Scholar
  20. 20.
    Yada V, Jain VK, Dixit PM (2002) Thermal stresses due to electrical discharge machining. Int J Mach Tools Manuf 42(8):877–888CrossRefGoogle Scholar
  21. 21.
    Rajurkar K, Pandit S (1984) Quantitative expressions for some aspects of surface integrity of electro discharge machined components. J Eng Ind (Trans. ASME) 106(2):171–177CrossRefGoogle Scholar
  22. 22.
    Dibitonto DD (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103CrossRefGoogle Scholar
  23. 23.
    Yeo SH, Kurnia W, Tan PC (2007) Electro-thermal modeling of anode and cathode in micro-EDM. J Phys D Appl Phys 40:2513–2521CrossRefGoogle Scholar
  24. 24.
    Snoeys R, Van Dijck F (1971) Investigation of electro discharge machining operations by means of thermo-mathematical model. CIRP Ann 20(1):35–37Google Scholar
  25. 25.
    Jilani TS, Pandey P (1983) An analysis of surface erosion in electrical discharge machining. Wear 84(3):275–284CrossRefGoogle Scholar
  26. 26.
    Shabgard M, Ahmadi R, Seyedzavvar M, Bavil Oliaei SN (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tool Manu 65:79–87CrossRefGoogle Scholar
  27. 27.
    Halliday D, Resnick R, Walker J (2013) Fundamentals of physics extended, 10th edition. John Wiley & SonsGoogle Scholar
  28. 28.
    Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J Appl Phys 73(11):7900–7909CrossRefGoogle Scholar
  29. 29.
    Ryzko H (1965) Drift velocity of electrons and ions in dry and humid air and in water vapor. Proc Phys Soc 85(6):1283–1295CrossRefGoogle Scholar
  30. 30.
    Descoeudres A (2006) characterization of electrical discharge machining plasmas; Ph. D Thesis; The Victoria University of ManchesterGoogle Scholar
  31. 31.
    Francis CK, Bennett HT (1922) The surface tension of petroleum. J Indus Eng Chem 14(7):626–627CrossRefGoogle Scholar
  32. 32.
    Wang F, Wu J, Liu Z (2006) Surface tensions of mixtures of diesel oil or gasoline and dimethoxymethane, dimethyl carbonate, or ethanol. Energy Fuel 20:2471–2474CrossRefGoogle Scholar
  33. 33.
    Loo KH, Moss GJ, Tozer RC, Stone DA, Jinno M, Devonshire R (2004) A dynamic collisional-radiative model of a low-pressure approach to modeling fluorescent lamps for circuit simulations. IEEE Trans Power Electron 19(4):1117–1129CrossRefGoogle Scholar
  34. 34.
    Albinskiy K, Musiol K, Miernikiewicz A, Labuz S, Malota M (1996) The temperature of a plasma used in electrical discharge machining. Plasma Sources Sci Technol 5:736–742CrossRefGoogle Scholar
  35. 35.
    Sen SN, Das RP (1973) Effect of magnetic field on primary ionization by electron collision. Int J Electron 39(6):448–457Google Scholar
  36. 36.
    Francis F C (2016) Introduction to plasma physics and controlled fusion, 2nd Edition, Springer international publishing SwitzerlandGoogle Scholar
  37. 37.
    Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40:316–323CrossRefGoogle Scholar
  38. 38.
    Marafona J, Chousal JAG (2006) A finite element model of EDM based on Joule effect. Int J Mach Tool Manu 46:595–602CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Reza Shabgard
    • 1
    Email author
  • Ahad Gholipoor
    • 1
  • Mousa Mohammadpourfard
    • 2
  1. 1.Mechanical Engineering DepartmentUniversity of TabrizTabrizIran
  2. 2.Faculty of Chemical and Petroleum EngineeringUniversity of TabrizTabrizIran

Personalised recommendations