Friction stir welding of a hypoeutectic Al–Si alloy: microstructural, mechanical, and cyclic response

  • S. Richmire
  • M. HaghshenasEmail author


In the present study, the effect of friction stir welding (FSW) parameters, tool traverse, and rotational speeds has been studied on microstructural evolution, mechanical properties, and cyclic (fatigue) response of hypoeutectic Al–10Si aluminum sheets. The main objective of the present paper is to establish the correlations between microstructure/mechanical property/fatigue response/friction stir welding parameters. Results show significant improvement in all aspects (mechanical, microstructural, cyclic) of the friction stir-welded joins thanks to elimination of casting porosities, grain refinement, and silicon fragmentation/spheroidization. The latter one is attributed to the severe plastic deformation imposed by the FSW rotating tool, which translate as-cast blade-shaped eutectic silicon particles to fragmented/spheroidized silicon particles, which are evenly distributed in the aluminum matrix.


Al–10Si alloy Friction stir welding Fatigue Microstructure Hardness Si spheroidization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge grant provided by ND EPSCoR (21727) to work on this research.


  1. 1.
    Zanani M (2015) "Al-Si cast alloys—microstructure and mechanical properties at ambient and elevated temperature, PhD thesis, School of Engineering, Jönköping University, Jönköping, SwedenGoogle Scholar
  2. 2.
    Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes, and applications, ASM InternationalGoogle Scholar
  3. 3.
    Ma ZY, Sharma SR, Mishra RS (2006) Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing. Metall Mater Trans A 37:3323–3336CrossRefGoogle Scholar
  4. 4.
    Ma A, Takagi M, Saito N, Iwata H, Nishida Y, Suzuki K, Shigematsu I (2005) Mater Sci Eng A408:147–153CrossRefGoogle Scholar
  5. 5.
    Basavakumar KG, Mukunda PG, Chakraborty M (2008) Impact toughness in Al–12Si and Al–12Si–3Cu cast alloys—Part 1: Effect of process variables and microstructure. IntJ Impact Eng 35:199–205CrossRefGoogle Scholar
  6. 6.
    Tolnai D, Requena G, Cloetens P, Lendvai J, Degischer HP (2013) Effect of solution heat treatment on the internal architecture and compressive strength of an AlMg4.7Si8 alloy. Mater Sci Eng A 585:480–487CrossRefGoogle Scholar
  7. 7.
    Dang B, Liu C-C, Liu F, Liu Y-Z, Li Y-B (2016) Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy. Trans Nonferrous Met Soc China 26:634–642CrossRefGoogle Scholar
  8. 8.
    Pio LY (2011) J Appl Sci 11:2048–2052CrossRefGoogle Scholar
  9. 9.
    Tiedje NS, Hattel J, Taylor JA, Easton MA (2012) IOP Conf Series: Materials Science and Engineering 27 (2011) 012033, doi:
  10. 10.
    Srirangam P, Chattopadhyay S, Bhattacharya A, Nag S, Kaduk J, Shankar S, Banerjee R, Shibata T (2014) Probing the local atomic structure of Sr-modified Al–Si alloys. Acta Mater 65:185–193CrossRefGoogle Scholar
  11. 11.
    Birol Y (2014) Mater Sci Technol 30Google Scholar
  12. 12.
    Purcek G, Saray O, Karaman I, Kucukomeroglu T (2008) Effect of severe plastic deformation on tensile properties and impact toughness of two-phase Zn–40Al alloy. Mater Sci Eng A 490:403–410CrossRefGoogle Scholar
  13. 13.
    Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann Manuf Technol 57:716–735CrossRefGoogle Scholar
  14. 14.
    Ghassemali E, Riestra M, Bogdanoff T, Kumar BS, Seifeddine S (2017) Hall-Petch equation in a hypoeutectic Al-Si cast alloy: grain size vs. secondary dendrite arm spacing. Procedia Engineering 207:19–24CrossRefGoogle Scholar
  15. 15.
    Rao H, Jordon J, Boorgu S, Kang H, Yuan W, Su X (2017) Influence of the key-hole on fatigue life in friction stir linear welded aluminum to magnesium. Int J Fatigue 105:16–26CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Pan C, Male A (2017) Metall and Mat Trans A 31:2537–2543CrossRefGoogle Scholar
  17. 17.
    Aktarer SM, Sekban DM, Yanar H, Purçek G (2017) IOP Conf. Ser.: Materials Science and Engineering 174 (2017)Google Scholar
  18. 18.
    Jana S, Mishra RS, Baumann JB, Grant G (2010) Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6 Mg alloy. Acta Mater 58:989–1003CrossRefGoogle Scholar
  19. 19.
    Sharma V, Singh S, Sharma C, Upadhyay V (2014) All India manufacturing technology. Des Res Conf 475:1–6Google Scholar
  20. 20.
    Węglowski M (2014) Archives of foundry. Engineering 14:75–78Google Scholar
  21. 21.
    Karthikeyan L, Senthilkumar VS, Padmanabhan KA (2010) On the role of process variables in the friction stir processing of cast aluminum A319 alloy. Mater Des 31:761–771CrossRefGoogle Scholar
  22. 22.
    Riestra M, Ghassemali E, Bogdanoff T, Seifeddine S (2017) Interactive effects of grain refinement, eutectic modification and solidification rate on tensile properties of Al-10Si alloy. Mater Sci Eng A 703:270–279CrossRefGoogle Scholar
  23. 23.
    Jung J-G, Lee S-H, Leen J-M, Cho Y-H, Kim S-H, Yoon W-H (2016) Mater Sci Eng A669:187–195CrossRefGoogle Scholar
  24. 24.
    Timpel M, Wanderka N, Grothausmann R, Banhart J (2013) Distribution of Fe-rich phases in eutectic grains of Sr-modified Al–10wt.% Si–0.1wt.% Fe casting alloy. J Alloys Compd 558:18–25CrossRefGoogle Scholar
  25. 25.
    Mishra R, Ma Y (2000) Material Science and Engineering R 50: 1–78Google Scholar
  26. 26.
    Nelaturu P, Jana S, Mishra RS, Grant G, Carlson BE (2018) Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy. Mater Sci Eng A 716:165–178CrossRefGoogle Scholar
  27. 27.
    Lin YC, Luo S-C, Huang J, Yin L-X, Jiang X-Y (2018) Effects of solution treatment on microstructures and micro-hardness of a Sr-modified Al-Si-Mg alloy. Mater Sci Eng A 725:530–540CrossRefGoogle Scholar
  28. 28.
    Rajakumar S, Muralidharan C, Balasubramanian V (2010) Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints. Trans Nonferrous Metals Soc China 20:1863–1872CrossRefGoogle Scholar
  29. 29.
    Meenia S, MD F, Babu S, Immanuel R, Panigrahi S, Ram GJ (2016) Particle refinement and fine-grain formation leading to enhanced mechanical behaviour in a hypo-eutectic Al–Si alloy subjected to multi-pass friction stir processing. Mater Charact 113:134–143CrossRefGoogle Scholar
  30. 30.
    Richmire S, Sharifi P, Haghshenas M (2018) On microstructure, hardness, and fatigue properties of friction stir-welded AM60 cast magnesium alloy. Int J Adv Manuf Technol 98:2157–2172. CrossRefGoogle Scholar
  31. 31.
    Choi DH, KIM YH, Ahn BW, Kim YI, Jung SB (2013) Microstructure and mechanical property of A356 based composite by friction stir processing. Trans Nonferrous Met Soc China 23:335–340CrossRefGoogle Scholar
  32. 32.
    Guru P, Khan F, Panigrahi S, Ram Janaki G (2015) Enhancing strength, ductility and machinability of a Al–Si cast alloy by friction stir processing. J Manuf Process 18:67–74CrossRefGoogle Scholar
  33. 33.
    Miller W, Zhuang L, Bottema J, Wittebrood A, Smet PD, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49CrossRefGoogle Scholar
  34. 34.
    Klobčar D, Nagode A, Smolej A, Tušek1 J (2013) FSW of aluminum alloy AlSi12. RMZ – M&G 60:183–189Google Scholar
  35. 35.
    Tutunchilar S, Givi MB, Haghpanahi M, Asadi P (2012) Eutectic Al–Si piston alloy surface transformed to modified hypereutectic alloy via FSP. Mater Sci Eng A 534:557–567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of North DakotaGrand ForksUSA

Personalised recommendations