Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite

  • C. O. UjahEmail author
  • A. P. I. Popoola
  • O. M. Popoola
  • V. S. Aigbodion


An experimental study of the microstructure, electrical conductivity, corrosion characteristics and mechanical strength of Al-Nb nanocomposite consolidated via spark plasma sintering was the focus of this work. The start-up powders as well as the sintered samples were characterised with X-ray diffractometer, transmission electron microscopy and field-emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The microhardness of the sintered samples was tested with Vickers hardness tester. The polarisation test was carried out with Potentiostat Autolab. The electrical conductivity was tested with four-point probe meter. The microstructural results showed homogenous dispersion of Nb reinforcement in the matrix, no grain growth and absence of voids. Good corrosion characteristics were achieved with Al-1Nb and Al-4Nb composites while the highest microhardness of 420 MPa and tensile strength of 138 MPa were obtained with Al-4Nb. The electrical conductivity increased from 38.9 to 40.1% IACS with Al-8Nb. The improved properties were as a result of the optimal sintering parameters, good fabrication attributes of SPS and the synergistic effects of Al and Nb.


Niobium Spark plasma sintering Mechanical strength Aluminium Corrosion Electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge Centre for Energy and Electric Power (CEEP), Tshwane University of Technology, Pretoria, NRF and DHET for providing financial aid in part for this project.


  1. 1.
    Ismaila KA, Nouari S, Syed FH, Nasser AA (2015) Microstructure and properties of spark plasma sintered Aluminium containing 1 wt. % SiC nanoparticles. J Metals 5:70–83 ISSN 2075-4701CrossRefGoogle Scholar
  2. 2.
    Das A, Harimkar SP (2014) Effect of graphene nano plate and silicon carbide nanoparticle reinforcement on mechanical and tribological properties of spark plasma sintered magnesium matrix composites. J Mater Sci Technol 30(11):1059–1070CrossRefGoogle Scholar
  3. 3.
    Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. J Powder Technol 221:220–227CrossRefGoogle Scholar
  4. 4.
    Feng H, Zhou Y, Jia D, Meng Q (2005) Rapid synthesis of Ti alloy with B addition by spark plasma sintering. J Mater Sci Eng A 390:344–349CrossRefGoogle Scholar
  5. 5.
    Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid Nano composites. J Ceram Int 42:12330–12340CrossRefGoogle Scholar
  6. 6.
    Groza J, Zavaliangos A (2000) Sintering activation by external electrical field. J Mater Sci Eng A 287(2):171–177CrossRefGoogle Scholar
  7. 7.
    Verma AS, Sumankant, Suri NM, Yashpal (2015) Corrosion behaviour of Aluminium base particulate metal matrix composites: a review. Mater Today, Proceedings 2015(2):2840–2851CrossRefGoogle Scholar
  8. 8.
    Abbas MK (2010) Effects of friction stir welding on the microstructure and corrosion behaviour of aluminium alloy AA6061-T651. In Proceedings of the 2nd regional Conference for engineering sciences. (pp. 1–2), BaghdadGoogle Scholar
  9. 9.
    Birol Y (2007) Response to thermal exposure of the mechanically alloyed Al–Ti/C powders. J Mater Sci 42(13):5123–5128. CrossRefGoogle Scholar
  10. 10.
    Loto RT, Babalola P (2017) Corrosion polarization behaviour and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations. Cogent Eng 4.
  11. 11.
    Thomson KE, Jiang D, Yao W, Ritchie RO, Mukherjee AK (2012) Characterization and mechanical testing of alumina-based Nano composites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. J Acta Mater 60:622–632CrossRefGoogle Scholar
  12. 12.
    Sairam K, Sonber JK, Murthy TSRCH, Subramanian C, Fotedar RK, Nanekar P, Hubli RC (2014) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185–192CrossRefGoogle Scholar
  13. 13.
    Ehsan G, Ali F, Masoud A, Kamyar S, Touradj E (2017) Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods. J Mater 10:1255. CrossRefGoogle Scholar
  14. 14.
    Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Met Mater 20(2):152–159CrossRefGoogle Scholar
  15. 15.
    Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik PD, Soulier M, Saunier S, Goeuriot D, Rouleau O (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (HIP) and microwaves sintering techniques on p-type Bi 2 Te 3 thermoelectric properties. Mater Res Bull 47:1954–1960CrossRefGoogle Scholar
  16. 16.
    Al-Aqeeli N (2013) Processing of CNTs reinforced Al-Based nanocomposites using different consolidation techniques. Journal of Nano materials, Article ID 370785, 10 pages
  17. 17.
    Chieh K, Te-Tan L, Kuo-Hwa T, Kuo-Ying C, Ming-Shuing C (2009) The influences of powder mixing process on the quality of W-cu composites. J Trans Canada Soc Mech Engr 33:3Google Scholar
  18. 18.
    Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2018) Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int J Adv Manuf Technol.
  19. 19.
    Cahoon JR, Broughton WH, Kutzak AR (1983) The determination of yield strength from hardness measurements. Metal Trans 2:1979–1983Google Scholar
  20. 20.
    Adebiyi DI, Popoola API (2015) Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying. Mater Des 74:67–75CrossRefGoogle Scholar
  21. 21.
    Callister J, William D (2005) Fundamentals of materials science and engineering, 2nd edn. John Wiley and sons, USA, p 199. isbn:ISBN: 978-0-471-47014-4Google Scholar
  22. 22.
    Marks LD (1994) Experimental studies of small particle structures. Rep Prog Phys 57:603–649CrossRefGoogle Scholar
  23. 23.
    Yadav V, Harimkar SP (2011) Microstructure and properties of spark plasma sintered carbon nanotube reinforced Aluminium matrix composites. Adv Eng Mater 13(12):1128–1134. CrossRefGoogle Scholar
  24. 24.
    Ullbrand JM, Cordoba JM, Tamayo-Ariztondo JM, Elizalde MR, Nygren M, Molina-Aldareguia JM, Oden M (2010) Thermo-mechanical properties of copper-carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos Sci Technol 2010 70:2263–2268CrossRefGoogle Scholar
  25. 25.
    AzoNetwork (2018) Aluminium alloys aluminium 1050 properties, fabrication and applications.
  26. 26.
    Sher H, Zallen R (1970) Journal of. Chem Phys 53:3759–3761Google Scholar
  27. 27.
    Oladijo OP, Obadele BA, Venter AM, Cornish LA (2016) Investigating the effect of porosity on corrosion resistance and hardness of WC-co coatings on metal substrates. African Corr J 2:1Google Scholar
  28. 28.
    Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Rathel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–848CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • C. O. Ujah
    • 1
    • 2
    Email author
  • A. P. I. Popoola
    • 1
  • O. M. Popoola
    • 2
  • V. S. Aigbodion
    • 1
    • 3
  1. 1.Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa
  2. 2.CEEP, Department of Electrical EngineeringTshwane University of TechnologyPretoriaSouth Africa
  3. 3.Department of Metallurgical and Materials EngineeringUniversity of NigeriaNsukkaNigeria

Personalised recommendations