Basic research on electroforming of Fe–Ni shell with low thermal expansion

  • Anxin Li
  • Xiaocong Tang
  • Zengwei ZhuEmail author
  • Yapeng Liu


Traditional mold metal always has a high thermal expansion coefficient which cannot satisfy the demand for composite material component mold making. Therefore, in order to get a cylindrical shell in thicker, large size, and low thermal expansion property for mold making, fundamental experiment of electrodeposited Fe–Ni alloy was performed on a cylindrical cathode with different rotary speeds and current densities. The composition, micro-structure, thermal expansion property, and mechanical properties were tested after deposition. The results showed that with the decreasing in current density and increasing in cathode rotary speed, the thermal expansion coefficient, micro-hardness, and tensile strength are decreasing while the iron content represents an upward trend. Due to the application of rotating cathode speed ranging from 10 to 60 r/min, the thermal expansion coefficient of alloy can be adjusted between 7.6 and 13.3 × 10−6/°C. In cathode rotary speed of 60 r/min, a good quality Fe–Ni alloy cylindrical sample of 64 wt.% iron contents, hardness 558 HV, tensile strength 1364 MPa, and thermal expansion coefficient 7.6 × 10−6/°C can be obtained at a comparatively high current density 6 A/dm2.


Cylindrical shell Fe–Ni alloy Electroforming Low thermal expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

The authors acknowledge financial support from the Foundation for the National Natural Science Foundation of China (Grant No. 51475239) and the Author of National Excellent Doctoral Dissertation of PR China (Grant No. FANEDD-201138).


  1. 1.
    Harner LL (1997) Invar at 100 years. Adv Mater Process 151(5):31–34Google Scholar
  2. 2.
    He S, Li CH, Zheng JJ, Ren JY, Ha YH (2017) Effect of deformation temperature on dynamic recrystallization an CSL grain boundary distribution of Fe-36% Ni Invar alloy. J Mater Eng Perform:1–7Google Scholar
  3. 3.
    Rousse C, Fricoteaux P (2011) Electrodeposition of thin films and nanowires Ni–Fe alloys, study of their magnetic susceptibility. J Mater Sci 46:6046–6053CrossRefGoogle Scholar
  4. 4.
    Zhu ZW, Li XL, Qu NS, Zhu D (2015) A hybrid process for complex shaped parts electroforming. Int J Adv Manuf Technol 81:1–6Google Scholar
  5. 5.
    Ortega F, Sova A, Monzon MD, Marrero MD, Benitez AN, Bertrand P (2015) Combination of electroforming and cold gas dynamic spray for fabrication of rotational moulds: feasibility study. Int J Adv Manuf Technol 76:1243–1125CrossRefGoogle Scholar
  6. 6.
    Monzon MD, Marrero MD, Benitez AN, Hernandez PM (2005) Internal stresses analysis in electroformed nickel shells for thermoplastics injection mould core (rapid tooling). Rev Metal 41(1):53–59CrossRefGoogle Scholar
  7. 7.
    Monzon MD, Marrero MD, Benitez AN, Hernandez PM, Cardenes JF (2006) A technical note on the characterization of electroformed nickel shells for their application to injection moulds. J Mater Process Technol 176:273–277CrossRefGoogle Scholar
  8. 8.
    Hiroaki N, Satoshi O (2004) Mechanism of anomalous electrodeposition of Fe-Ni. J Jpn Inst Metals 55(6):428–433Google Scholar
  9. 9.
    Hu CC, Bai A (2002) The inhibition of anomalous codeposition of iron-group alloys using cyclic voltammetry. J Electrochem Soc 149:615–622CrossRefGoogle Scholar
  10. 10.
    Llavona A, Perez L, Sanchez MC, Manuel VD (2013) Enhancement of anomalous codeposition in the synthesis of Fe-Ni alloys in nanopores. Electrochim Acta 106:392–397CrossRefGoogle Scholar
  11. 11.
    Torabinejad V, Aliofkhazraei M, Assareh S, Allahyarzadeh MH, Rouhaghdam AS (2017) Electrodeposition of Ni-Fe alloys, composites, and nano coatingse-a review. J Alloys Compd 691:841–859CrossRefGoogle Scholar
  12. 12.
    Lee TR, Chang LW, Chen CH (2012) Effect of electrolyte temperature on composition and phase structure of nanocrystalline Fe–Ni alloys prepared by direct current electrodeposition. Surf Coat Technol 207:523–528CrossRefGoogle Scholar
  13. 13.
    Sanaty-Zadeh A, Raeissi K, Saidi A (2009) Properties of nanocrystalline iron–nickel alloys fabricated by galvano-static electrodeposition. J Alloys Compd 485:402–407CrossRefGoogle Scholar
  14. 14.
    Li H, Ebrahimi F (2003) Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Mater Sci Eng A 347:93–101CrossRefGoogle Scholar
  15. 15.
    Chang WS, Wei Y, Guo JM, He FJ (2012) Thermal stability of Ni-Fe alloy foils continuously electrodeposited in a fluorborate bath. OJMetal 2:18–23CrossRefGoogle Scholar
  16. 16.
    Matsui I, Mori H, Kawakatsu T, Takigawa Y, Uesugi T (2014) Enhancement in mechanical properties of bulk nanocrystalline Fe–Ni alloys electrodeposited using propionic acid. MAT SCI ENG A-STRUCT 607:505–510Google Scholar
  17. 17.
    Su XH, Qiang C (2012) Influence of pH and bath composition on properties of Ni–Fe alloy films. Bull Mater Sci 35:183–189CrossRefGoogle Scholar
  18. 18.
    Li MA, Zhang L, Li XB, Li ZY, Zhou KC (2015) Fabrication and characterization of electrodeposited nanocrystalline Ni−Fe alloys for NiFe2O4 spinel coatings. Trans Nonferrous Metals Soc China 25:146–153CrossRefGoogle Scholar
  19. 19.
    Ebrahimi F, Li HQ (2003) Structure and properties of electrodeposited nanocrystalline FCC Ni-Fe alloys. J Rev Adv Mater Sci 5:134–138Google Scholar
  20. 20.
    Tabakovic I, Inturi V, Thurn J, Kief M (2010) Properties of Ni1−xFex (0.1 < x < 0.9) and Invar (x = 0.64) alloys obtained by electrodeposition. Electrochim Acta 55:6749–6754CrossRefGoogle Scholar
  21. 21.
    Cacciamani G, Dinsdale A, Palumbo M, Pasturel A (2010) The Fe-Ni system: thermodynamic modelling assisted by atomistic calculations. Intermetallics 18(6):1148–1162CrossRefGoogle Scholar
  22. 22.
    Nagayama T, Yamamoto T, Nakamura T (2016) Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the invar composition range. Electrochim Acta 205:178–187CrossRefGoogle Scholar
  23. 23.
    Nagayama T, Yamamoto T, Nakamura T (2016) Thermal expansion and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range. Electrochem Acta 205:178–187CrossRefGoogle Scholar
  24. 24.
    LiuYC LL, Wu Z, Li JK, She B, Hua WB (2010) Grain growth and grain size effects on the thermal expansion properties of an electrode posited Fe–Ni invar alloy. Scr Mater 63:359–362CrossRefGoogle Scholar
  25. 25.
    Liang D, Liu J, Reuter K, Baker-O'Neal B, Huang Q (2014) Electroplating of Fe-rich NiFe alloys in sub-50 nm lines. J Electrochem Soc 161:D301–D308CrossRefGoogle Scholar
  26. 26.
    Di Bari G (2010. Chapter 3) Electrodeposition of nickel, modern electroplating. Wiley, Hoboken, pp 79–113Google Scholar
  27. 27.
    Gezerman AO, Corbacioglu BD (2010) Analysis of the characteristics of nickel plating baths. Int J Chem 2:124–137CrossRefGoogle Scholar
  28. 28.
    Torabinejad V, Rouhaghdam AS, Aliofkhazraei M, Allahyarzadeh M (2016) Electrodeposition of NieFe and NiFe-(nano Al2O3) multilayer coatings. Alloys Compd 657:526–536CrossRefGoogle Scholar
  29. 29.
    Vaes J, Fransaer J, Celis JP (2000) The role of metal hydroxides in NiFe deposition. Electrochem Soc 147:3718–3724CrossRefGoogle Scholar
  30. 30.
    Vaes J, Fransaer J, Celis JP (2002) Cathodic inhibition effects during NiFe and ZnNi alloy deposition. Electrochem Soc 149:567–572CrossRefGoogle Scholar
  31. 31.
    Tokarz A, Wieczorek P, Lis A, Morgiel J (2010) Microstructure of electrodeposited NiFe/cu multilayers. J Microsc 237:456–460MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kieling VC (1997) Parameters influencing the electrodeposition of Ni-Fe alloys. Surf Coat Technol 96:135–139CrossRefGoogle Scholar
  33. 33.
    Tang XC, Zhu ZW, Shen CJ (2016) Experimental study on Fe-Ni alloy electrodeposition in a vacuum. Integr Ferroelectr 172:125–131CrossRefGoogle Scholar
  34. 34.
    Li HQ, Liaw PK, Choo H, Tabachnikova ED, Podolskiy AV (2008) Temperature-dependent mechanical behavior of a nanostructured Ni-Fe alloy. MAT SCI ENG A-STRUCT 493:93–96Google Scholar
  35. 35.
    Hall EO (1951) The deformation and ageing of mild steel. Proc Phys Soc B 64:747–753CrossRefGoogle Scholar
  36. 36.
    PetchN J (1953) The cleavage strength of polycrystals. Eng Fract Mech 174:25–28Google Scholar
  37. 37.
    Hu J, Shi YN, Sauvage X, Sha G, Lu K (2017) Grain boundary stability governs hardening and softening in extremely fine nano-grained metals. Science 335:1292–1296CrossRefGoogle Scholar
  38. 38.
    Koch CC, Narayan J (2001) The inverse Hall-Petch effect—fact or artifact. Mater Res Soc Proc 634:B5.1.1–B5.1.11Google Scholar
  39. 39.
    Jang D, Atzmon M (2003) Grain-size dependence of plastic deformation in nanocrystalline Fe. J Appl Phys 93(11):9282–9286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Anxin Li
    • 1
  • Xiaocong Tang
    • 1
  • Zengwei Zhu
    • 1
    Email author
  • Yapeng Liu
    • 1
  1. 1.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations