Effects of work hardening on mechanical metal properties—experimental analysis and simulation by experiments

  • Hichem BounezourEmail author
  • Lakhdar Laouar
  • Mounira Bourbia
  • Bousaid Ouzine


The aim of the present work is to improve the materials’ performances, particularly their elastic property based on an optimal exploitation of surface work-hardening phenomenon, using surface plastic deformation treatment (DPS). The surface of a mechanical piece is considered as the most vulnerable zone that determines its mechanical performances. To improve the surface physico-mechanical properties, the surface plastic deformation treatment (DPS) is often used. The (DPS) acts by a combined action of: surface hardening, structural modification, and the generation of the compression residual stresses, the factors that will create a heterogeneous plastic deformation. Knowing that during operation the mechanical pieces have to be subjected to a stress smaller than the elastic limit (taking into account the safety margins), where the material behavior is reversible, and to reach the maximum allowable stresses, we have to increase the material’s elastic limits. This objective can be realized through an optimal use of work hardening phenomenon for the treated surface by the DPS. The work hardening is characterized by the increase of the yield strength (Re), the surface hardness (Hv), and consequently the increase of the brittleness. Depending on the considered metals, when the piece has a defect variation: cavity, inclusion (precipitate), or zones of different hardness, it can create a stress concentration which generates a local hardening. This phenomenon is one of the main causes of crack generation. In our study, we consider the influence of work hardening on the elastic behavior of XC38 steel and aluminum alloy.


Work hardening Hardening of materials Mechanical surface treatment (TMS) Burnishing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghodake AP, Rakhade RD, Maheshwari AS (2013) Effect of burnishing process on behavior of engineering. Materials- a review. IOSR J Mech Civ Eng 5(5):09–20CrossRefGoogle Scholar
  2. 2.
    Tripathi H, Pungotra H, Gandotra S, Beri N, Kumar A (2013) Experimental investigation into ball burnishing process of brass using Taguchi approach. Int J Sci Eng Res 4(8):66Google Scholar
  3. 3.
    Shioua F-J, Huanga S-J, Shihb AJ, Zhuc J, Yoshinoc M (2017) Fine surface finish of a hardened stainless steel using a new burnishing tool. Procedia Manuf 10:208–217. CrossRefGoogle Scholar
  4. 4.
    El-Taweel TA, El-Axir MH (2009) Analysis and optimization of the ball burnishing process through the Taguchi technique. Int J Adv Manuf Technol 41:301–310. CrossRefGoogle Scholar
  5. 5.
    Bourebia M, Laouar L, Hamadache H, Dominiak S (2016) Improvement of surface finish by ball burnishing: approach by fractal dimension. Surf Eng 33:255–262. CrossRefGoogle Scholar
  6. 6.
    Liua ZY, Fua CH, Sealyb MP, Zhaoc Y, Guoa YB (2017) Benchmark burnishing with Almen strip for surface integrity. Procedia Manuf 10:456–466. CrossRefGoogle Scholar
  7. 7.
    Jayakrishnan J, Suraj R (2014) Effect of roller burnishing process on tool steel material using CNC lathe. Int J Des Manuf Technol 5(3):155–159Google Scholar
  8. 8.
    Malleswara Rao JN, Chennakesava Reddy A, Sumalatha M (2011) Experimental investigation of the influence of roller burnishing tool passes on surface roughness and hardness of brass specimens. Indian J Sci Technol 4(9):1113–1118Google Scholar
  9. 9.
    Frihat MH, Al Quran FMF, Al-Odat MQ (2015) Experimental investigation of the influence of burnishing parameters on surface roughness and hardness of brass alloy, material science & engineering. Mater Sci Eng 5(1).
  10. 10.
    Malleswara Rao JN, Chenna Kesava A, Reddy PVRR (2011) The effect of roller burnishing on surface hardness and surface roughness on mild steel specimens. Int J Appl Eng Res Dindigul 1(4):777–785Google Scholar
  11. 11.
    Satya Narayana Gupta M, Ramana Reddy D, Thirupathi Reddy G (2015) Effect of roller burnishing parameters on surface roughness and hardness. Int J Eng Res Appl (IJERA) 50–54Google Scholar
  12. 12.
    Hamel V, Roelandt JM, Gacel JN, Schmit F (2000) F.E. Finite modeling of clinch forming with automatic remeshing. Comp Struct 77:185–200Google Scholar
  13. 13.
    Guechichi H (1986) Prévision de contraintes résiduelles dues au grenaillage, thèse de doctorat d’ingénieur. ENSAM, ParisGoogle Scholar
  14. 14.
    Dawson PA (1989) Effet sur la tenue en fatigue des contraintes résiduelles induites par grenaillage. In: Lieurad CHP (ed) Fatigue des structures industrielles, Editions I.I.T.T., MarsGoogle Scholar
  15. 15.
    Braham S (1991) Modélisation du galetage des Vilebrequins. Evolution des contraintes résiduelles sous chargement cyclique. Thèse de Doctorat, PalaiseauGoogle Scholar
  16. 16.
    Yadav PS, Ghatge DA (2017) Performance improvement of roller burnishing, process– a review. Int Adv Res J Sci Eng Technol 4(1):148–151. CrossRefGoogle Scholar
  17. 17.
    Kazimiera K, Korzynski M, Byczkowska Z, Korzynska K (2013) Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing. J Mater Process Technol 213(11):1997–2004. CrossRefGoogle Scholar
  18. 18.
    Grzesik W, Rech J, Żak K (2015) High-precision finishing hard steel surfaces using cutting, abrasive and burnishing operations. Procedia Manuf 1:619–627. CrossRefGoogle Scholar
  19. 19.
    Goupy J (1996) La méthode des plans d’expériences – Optimisation du choix des essais et de l’interprétation des résultats, Ed. DunodGoogle Scholar
  20. 20.
    Goupy J (1999) Plans d'expériences pour surfaces de réponse, Paris: DunodGoogle Scholar
  21. 21.
    Palchev DD (1978) Traitement de finition et de durcissement par déformations Plastiques superficielles, MoscouGoogle Scholar
  22. 22.
    Laouar L, Hamadache H, Saad S, Bouchelaghem A, Mekhilef S (2009) Mechanical surface treatment of steel- optimization parameters of regime. Phys Procedia 2:1213–1221. CrossRefGoogle Scholar
  23. 23.
    El-Axir MH, Othman OM, Abodiena AM (2008) Study on the inner surface finishing of aluminum alloy 2014 by ball burnishing process. J Mater Process Technol 202:435–442. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Hichem Bounezour
    • 1
    Email author
  • Lakhdar Laouar
    • 1
  • Mounira Bourbia
    • 1
  • Bousaid Ouzine
    • 1
  1. 1.Laboratory of Industrial Mechanical (LMI), Mechanical Engineering DepartmentUniversity of Badji MokhtarAnnabaAlgeria

Personalised recommendations