Advertisement

Application of design of experiments for laser shock peening process optimization

  • Sergey ChupakhinEmail author
  • Benjamin Klusemann
  • Norbert Huber
  • Nikolai KashaevEmail author
ORIGINAL ARTICLE
  • 30 Downloads

Abstract

Laser shock peening—a very promising life enhancement technique—has demonstrated great success regarding the improvement of fatigue behavior via deep compressive residual stresses. However, the prediction and adaption of residual stress fields on basis of the laser peening parameters are still not comprehensively established. The aim of the current work is to investigate the effects of the laser pulse energy, the number of treatment overlaps as well as the laser spot size on the resulting residual stress distribution, characterized by following quantities: the residual stress close to the surface, the maximum compressive residual stress, and the integral compressive stress area over the specimen depth. For a systematic investigation of all main and interaction-based process parameter effects, and a subsequent parameter optimization, the general full factorial design is employed. The results show that laser shock peening with different process parameter combinations, inducing residual stresses with comparable integral stress area, can lead to a minimum fatigue life extension of approx. 100,000 cycles, representing a minimum fatigue life of 250% of the base material. The experimental scatter in the number of cycles to failure follows the Weibull distribution which qualitatively correlates with the standard deviation of the integral stress area.

Keywords

Laser shock peening Design of experiments Fatigue crack growth Residual stress Hole drilling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank S. Riekehr and R. Dinse from Helmholtz-Zentrum Geesthacht for their valuable support in carrying out LSP experiments and L. Moura for helping with hole drilling measurements.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Ding K, Ye L (2006) Laser shock peening. Performance and process simulation. Woodhead CambridgeGoogle Scholar
  2. 2.
    McElhone M, Rugg D (2005) Experimental evaluation of the fatigue performance of aero-engine fan blade dovetails. In: Presentation for the AeroMat, OrlandoGoogle Scholar
  3. 3.
    Heckenberger U, Hombergsmeier E, Bestenbostel W, Holzinger V (2010) LSP to improve the fatigue resistance of highly stressed AA7050 components. In: presentation for the 2nd International Conference on Laser Peening. San Francisco, pp 1–27Google Scholar
  4. 4.
    Hatamleh O, Lyons J, Forman R (2007) Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminium alloy joints. Int J Fatigue 29(3):421–434CrossRefGoogle Scholar
  5. 5.
    Hatamleh O (2009) A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA2195 joints. Int J Fatigue 31(5):974–988CrossRefGoogle Scholar
  6. 6.
    Zhao J, Dong Y, Ye C (2017) Laser shock peening induced residual stresses and the effect on crack propagation behavior. Int J Fatigue 100(1):407–417CrossRefGoogle Scholar
  7. 7.
    Rubio-Gonzalez C, Felix-Martinez C, Gomez-Rosas G, Ocana JL, Morales M, Porro JA (2011) Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Mater Sci Eng A 528(3):914–919CrossRefGoogle Scholar
  8. 8.
    McClung RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct 30(3):173–205CrossRefGoogle Scholar
  9. 9.
    Peyre P, Fabbro R, Merrien P, Lieurade H (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210(1–2):102–113CrossRefGoogle Scholar
  10. 10.
    Mostafa AM, Hameed MF, Obayya SS (2017) Effect of laser shock peening on the hardness of AL-7075 alloy. J King Saud Univ – Sci in PressGoogle Scholar
  11. 11.
    United States Patent 7137282, Laser shock peening, Rolls-Royce plc http://www.freepatentsonline.com/7137282.html. Accessed 31 January 2018
  12. 12.
    Sano Y, Akita K, Masaki K, Ochi Y, Altenberger I, Scholtes B (2006) Laser peening without coating as a surface enhancement technology. J Laser Micro/Nanoeng 1(3):161–166CrossRefGoogle Scholar
  13. 13.
    Laser Peening (2017) Metal Improvement Company LLC. http://www.kugelstrahlen-shotpeening-mic.de/laser-peening.html. Accessed 27 October 2017
  14. 14.
    Laser Peening System for Superior Metal Enhancement, Metal Forming, Fatigue and Cracking Prevention (2014) LSP Technologies Inc. https://www.lsptechnologies.com/. Accessed 24 October 2017
  15. 15.
    MacGillivray K, Dane B, Osborne M, Bair R, Garcia W (2010) F-22 laser shock peening depot transition and risk reduction. In: USAF ASIP Conference, San AntonioGoogle Scholar
  16. 16.
    Correa C, Ruiz de Lara L, Diaz M, Porro JA, Garcia-Beltran A, Ocana JL (2015) Influence of pulse sequence and edge material effect on fatigue life of Al2024-T351 specimens treated by laser shock processing. Int J Fatigue 70:196–204CrossRefGoogle Scholar
  17. 17.
    Bhamare S, Ramakrishnan G, Mannava SR, Langer K, Vasudevan VK (2013) Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti–6Al–2Sn–4Zr–2Mo alloy. Surf Coat Technol 232:464–474CrossRefGoogle Scholar
  18. 18.
    Sheng J, Huang S, Zhou J, Xu S, Zhang H (2016) Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy. Opt Laser Technol 77:169–176CrossRefGoogle Scholar
  19. 19.
    Zabeen S, Preuss M, Withers P (2015) Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth. Acta Mater 83:216–226CrossRefGoogle Scholar
  20. 20.
    You C, Achintha M, He B, Reed P (2017) A numerical study of the effects of shot peening on the short crack growth behaviour in notched geometries under bending fatigue tests. Int J Fatigue 103:99–111CrossRefGoogle Scholar
  21. 21.
    Frija M, Sghaier RB, Bouraoui C, Fathallah R (2012) Optimizing residual stress profile induced by laser shock peening using DOE technique. Appl Mech Mater 146:83–95CrossRefGoogle Scholar
  22. 22.
    Sibalija TV, Petronic SZ, Majstorovic VD, Milosavljevic A (2014) Modelling and optimisation of laser shock peening using an integrated simulated annealing-based method. Int J Adv Manuf Technol 73:1141–1158CrossRefGoogle Scholar
  23. 23.
    Sokol D, Clauer A, Ravindranath R, Lahrman DF (2004) Applications of laser peening to titanium alloys. In: ASME/JSME 2004 Pressure Vessels and Piping Division Conference, San DiegoGoogle Scholar
  24. 24.
    Achintha M, Nowell D, Fufari D, Sackett EE, Bache MR (2014) Fatigue behaviour of geometric features subjected to laser shock peening: experiments and modelling. Int J Fatigue 62:171–179CrossRefGoogle Scholar
  25. 25.
    Braisted W, Brockman R (1999) Finite element simulation of laser shock peening. Int J Fatigue 21(7):719–724CrossRefGoogle Scholar
  26. 26.
    Keller S, Chupakhin S, Staron P, Maawad E, Kashaev N, Klusemann B (2018) Experimental and numerical investigation of residual stresses in laser shock peened AA2198. J Mater Process Technol 255:294–307CrossRefGoogle Scholar
  27. 27.
    Hfaiedh N, Peyre P, Song H, Popa I, Ji V, Vignal V (2015) Finite element analysis of laser shock peening of 2050-T8 aluminum alloy. Int J Fatigue 70:480–489CrossRefGoogle Scholar
  28. 28.
    Cellard C, Retraint D, Francois M, Rouhaud E, Saunier D (2012) Laser shock peening of Ti-17 titanium alloy: influence of process parameters. Mater Sci Eng A 532:362–372CrossRefGoogle Scholar
  29. 29.
    Warren A, Guo Y, Chen S (2008) Massive parallel laser shock peening: simulation, analysis, and validation. Int J Fatigue 30:188–197CrossRefGoogle Scholar
  30. 30.
    Ebrahimi M, Amini S, Mahdavi S (2017) The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel. Int J Adv Manuf Technol 88(5):1557–1565CrossRefGoogle Scholar
  31. 31.
    Kamkarrad H, Narayanswamy S, Keshmiri M (2015) High repetition laser shock peening on magnesium based biodegradable alloys. J Laser Micro/Nanoeng 10(3):291–297CrossRefGoogle Scholar
  32. 32.
    Trdan U, Ocana JL, Grum J (2011) Surface modification of aluminium alloys with laser shock processing. J Mech Eng 57(5):385–393Google Scholar
  33. 33.
    ASM Aerospace Specification Metals Inc, Aluminum 2024-T3. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T3. Accessed 28 February 2017
  34. 34.
    Huda Z, Taib NI, Zaharinie T (2009) Characterization of 2024-T3: an aerospace aluminum alloy. Mater Chem Phys 113(2–3):515–517CrossRefGoogle Scholar
  35. 35.
    DeGarmo EP, Black JT, Kohser RA (2003) Materials and processes in manufacturing, 9th edn. Wiley, New YorkGoogle Scholar
  36. 36.
    Kacar H, Atik E, Meric C (2003) The effect of precipitation-hardening conditions on wear behaviours at 2024 aluminium wrought alloy. J Mater Process Technol 142(3):762–766CrossRefGoogle Scholar
  37. 37.
    Enz J, Khomenko V, Riekehr S, Ventzke V, Huber N, Kashaev N (2015) Single-sided laser beam welding of a dissimilar AA2024–AA7050 T-joint. Mater Des 76:110–116CrossRefGoogle Scholar
  38. 38.
    Chupakhin S, Kashaev N, Klusemann B, Huber N (2017) Artificial neural network for correction of effects of plasticity in residual stress profiles measured by hole drilling. J Strain Anal Eng Des 52(3):137–151CrossRefGoogle Scholar
  39. 39.
    American Society for Testing and Materials (ASTM) (2008) Standard test method for determining residual stresses by the hole-drilling strain-gage method, standard test method E837–08. American Society for Testing and Materials, West ConshohockenGoogle Scholar
  40. 40.
    Measurements Group (2001) Measurement of residual stresses by hole-drilling strain gage method. In: Tech note TN-503-6. Vishay Measurements Group, RaleighGoogle Scholar
  41. 41.
    Grant PV, Lord JD, Whitehead PS (2002) The measurement of residual stresses by the incremental hole drilling technique. Measurement good practice guide 53. National Physical Laboratory, TeddingtonGoogle Scholar
  42. 42.
    Steinzig M, Ponslet E (2003) Residual stress measurement using the hole drilling method and laser speckle interferometry: part 1. Exp Tech SEM 27(3):43–46CrossRefGoogle Scholar
  43. 43.
    Beghini M, Bertini L, Santus C (2010) A procedure for evaluating high residual stresses using the blind hole drilling method, including the effect of plasticity. J Strain Anal Eng Des 45(4):301–318CrossRefGoogle Scholar
  44. 44.
    Chupakhin S, Kashaev N, Huber N (2016) Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method. J Strain Anal Eng Des 51(8):572–581CrossRefGoogle Scholar
  45. 45.
    Jeff Wu CF, Hamada M (2000) Experiments: planning, analysis and parameter optimization. Wiley, New YorkGoogle Scholar
  46. 46.
    Montgomery DC (2001) Design and analysis of experiments, 5th 839 edn. Wiley, New YorkGoogle Scholar
  47. 47.
    Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New YorkzbMATHGoogle Scholar
  48. 48.
    Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New YorkzbMATHGoogle Scholar
  49. 49.
    ReliaSoft (2014) User's guide DOE++. ReliaSoft Publishing, TucsonGoogle Scholar
  50. 50.
    ReliaSoft Corporation (2015) Experiment design & analysis reference. ReliaSoft Publishing, TucsonGoogle Scholar
  51. 51.
    Kashaev N, Ventzke V, Horstmann M, Chupakhin S, Riekehr S, Falck R, Maawad E, Staron P, Schell N, Huber N (2017) Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. Int J Fatigue 98:223–233CrossRefGoogle Scholar
  52. 52.
    Ge MZ, Xiang JY (2016) Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy. J Alloys Compd 680:544–552Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials Research, Materials MechanicsHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Institute of Product and Process InnovationLeuphana University of LüneburgLüneburgGermany

Personalised recommendations