Influence of pulsed laser ablation on the surface integrity of PCBN cutting tool materials

  • Berend Denkena
  • Alexander KrödelEmail author
  • Thilo Grove


Polycrystalline cubic boron nitride (PCBN) is widely used in industry as a cutting tool material for the machining of hardened steels, cast, or nickel-based super alloys. For the generation of geometrical features of such tools, laser ablation is a novel and promising technology, which offers wear-free processing, high automation potential, and geometrical flexibility. In this study, the ablation mechanism is experimentally investigated for a wide range of laser pulse durations (fs-ns regime) and laser-induced effects on the surface properties are presented. It could be shown by using Raman spectroscopy that laser-induced transformations of cubic boron nitride to the hexagonal lattice structure (hBN) or boron oxide (B2O3) are strongly determined by the single pulse and areal fluence of the laser source. Furthermore, a pulse duration of few picoseconds or below reduces the thermally induced phase transformations. Moreover, it was shown that the use of ns-laser leads to significant melting and recrystallization processes of the binder material, which reduces surface hardness. This mechanism was not found for the use of fs- and ps-laser sources.


Pulsed laser ablation PCBN Cutting tools Surface integrity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the German Research Foundation (DFG) for the financial support within the project “KO 4293/6-1.” Moreover, the authors thank DMG MORI for supporting the experimental investigations.


  1. 1.
    Vel L, Demazeau G, Etourneau J (1991) Cubic boron nitride: synthesis, physicochemical properties and applications. J Mater Sci Eng B10:149–164. CrossRefGoogle Scholar
  2. 2.
    Singh BP, Solozhenko VL, Will G (1995) On the low-pressure synthesis of cubic boron nitride. Diam Relat Mater 4(10):1193–1195. CrossRefGoogle Scholar
  3. 3.
    Casanova CAM, Balzaretti NM, Voronin G, da Jornada JAH (1999) Experimental study of plastic deformation during sintering of cubic boron nitride compacts. Diam Relat Mater 8(8):1451–1454. CrossRefGoogle Scholar
  4. 4.
    Warhanek MG, Pfaff J, Meier L, Walter C, Wegener K (2016) Picosecond pulsed laser processing of polycrystalline diamond and cubic boron nitride composite materials. Conf Laserbased Mircro and Nanoprocess.
  5. 5.
    Jia Y (2011) Study on EDM technics of polycrystalline cubic boron nitride cutting tool and PCBN cutting tool’s life. Appl Mech Mater 120:311–315. CrossRefGoogle Scholar
  6. 6.
    Denkena B, Grove T, Behrens L (2015) Wear mechanisms in grinding of PCBN. Adv Mater Res 806:555–560. CrossRefGoogle Scholar
  7. 7.
    Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63:631–653. CrossRefGoogle Scholar
  8. 8.
    Denkena B, Köhler J, Meyer R, Stiffel JH (2011) Modification of the tool-workpiece contact conditions to influence the tool wear and workpiece loading during hard turning. Int J Autom Technol 3(5):353–361. CrossRefGoogle Scholar
  9. 9.
    Suzuki D, Itoigawa F, Kawata K, Nakamura T (2013) Using pulse laser processing to shape cutting edge of PCBN tool for high-precision turning of hardened steel. Int J Autom Technol 7(3):337–344. CrossRefGoogle Scholar
  10. 10.
    Li X, Gao Y, Pan W, Zhong Z, Song L, Chen W, Yang Q (2015) Effect of hBN content on the friction and wear characteristics of B4C–hBN ceramic composites under dry sliding condition. Ceram Int 31:3918–3926. CrossRefGoogle Scholar
  11. 11.
    Breidenstein B, Denkena B, Bergmann B (2014) Laser preparation of cBN inserts and its effect on tool surface integrity and tool life. Proc. Eur. PM 2014. Accessed 10 Nov 2018
  12. 12.
    Pacella M (2014) Pulsed laser ablation of ultrahard structures: generation of tolerant freeform surfaces for advanced machining applications. Dissertation, University of NottinghamGoogle Scholar
  13. 13.
    Pacella M, Butler-Smith PW, Axinte DA, Fay MW (2015) The allotropic transformation of polycrystalline cubic boron nitride structures resulting from the thermal effects of pulsed laser ablation. Diam Relat Mater 59:62–68. CrossRefGoogle Scholar
  14. 14.
    Daniel C, Ostendorf S, Hallmann S, Emmelmann C (2016) Picosecond laser processing of polycrystalline cubic boron nitride — a method to examine the ablation behavior of a high cubic boron nitride content grade material. J Laser Appl 28(1):012001–1–012001–6. CrossRefGoogle Scholar
  15. 15.
    Reich S, Ferrari AC (2005) Resonant Raman scattering in cubic and hexagonal boron nitride. Phys Rev B 71:205201–1–205201-12. Google Scholar
  16. 16.
    Klett A, Freudenstein R, Plass MF, Kulisch W (1999) Stress of c-BN thin films: a parameter investigation. Surf Coat Technol 116-119:86–92. CrossRefGoogle Scholar
  17. 17.
    Lohse BH, Calka A, Wexler D (2005) Raman spectroscopy as a tool to study TiC formation during controlled ball milling. J Appl Phys 97:114912–7–114912–1. CrossRefGoogle Scholar
  18. 18.
    Ding XL, Zhou YN, Yang Y, Sun Q, Lu F, Fu ZW (2011) Electrochemical mechanism of amorphous boron oxide thin film with lithium. Electrochem Solid State Lett 14(12):A177–A179. CrossRefGoogle Scholar
  19. 19.
    Polte J (2017) Kubisch-kristallines Bornitrid ohne Bindephase als Schneidstoff in der Ultrapräzisions-Zerspanung. Dissertation, University of BerlinGoogle Scholar
  20. 20.
    Yang Q, Sha J, Wang L, Zou Y, Niu J, Cui C, Yang D (2005) Crystalline boron oxide nanowires on silicon substrates. Phys E 27:319–324. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Berend Denkena
    • 1
  • Alexander Krödel
    • 1
    Email author
  • Thilo Grove
    • 1
  1. 1.Leibniz Universität HannoverInstitute of Production Engineering and Machine Tools (IFW)GarbsenGermany

Personalised recommendations