Advertisement

Design of a wire measurement system for dynamic feeding TIG welding using instantaneous angular speed

  • Régis Henrique Gonçalves e Silva
  • Luiz Eduardo dos Santos PaesEmail author
  • Gustavo Luis de Sousa
  • Cleber Marques
  • Alberto Bonamigo Viviani
  • Mateus Barancelli Schwedersky
  • Tiago Loureiro Fígaro da Costa Pinto
ORIGINAL ARTICLE
  • 57 Downloads

Abstract

Over the last years, a profusion of new versions of arc welding processes has overwhelmed the international welding scenario in the industry and academia. Innovations have been made possible not only by means of electronics and software developments but also through new concepts in mechanical design and mechanisms. With respect to the tungsten inert gas (TIG) process, low productivity is often a disadvantage, when compared to other arc welding processes. In order to manage this drawback, as well as to better deal with hard wetting materials (Ni-Cr alloys for example), a forward and backward wire oscillation movement has been implemented in TIG systems and finds good acceptability in the industry. However, dedicated wire feed measuring systems for this new operating regime are not available, which limits the process monitoring as a whole and hinders phenomena understanding and parametrization stage. The present paper thus addresses the development of a measuring methodology combined with a transducer, based on an optical encoder, for acquisition of instantaneous angular speed (IAS). The study covers analysis of the performance of previous instrumentation (found unsuitable), description of the dedicated system, and verification methodologies. Results lead to the validation of the system. Therefore, valuable information can now be extracted to provide feedback for this welding process version and avoid instabilities.

Keywords

Gas tungsten arc welding (GTAW) Wire oscillation Optical encoder Monitoring Instantaneous angular speed (IAS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thanks Welding and Mechantronics Institute (LABSOLDA) staff for the technical support.

Funding information

This work received financial support from CNPq.

Supplementary material

170_2018_3026_MOESM1_ESM.mov (91.6 mb)
ESM 1 (MOV 93818 kb)

References

  1. 1.
    Schwedersky MB, Gonçalves e Silva RH, Dutra JC, de Santana Weizenmann G, Bonacorso NG (2017) Switch back technique enhances the productivity of the TIG welding process. Weld World 61:971–977.  https://doi.org/10.1007/s40194-017-0465-6 CrossRefGoogle Scholar
  2. 2.
    Schwedersky MB, Dutra JC, Goncalves e Silva RH et al (2015) Double-electrode process speeds GTAW. Weld J 94:64–67Google Scholar
  3. 3.
    González Olivares EA, Gonçalves e Silva RH, Dutra JC (2017) Study of keyhole TIG welding by comparative analysis of two high-productivity torches for joining medium-thickness carbon steel plates. Weld Int 31:337–347.  https://doi.org/10.1080/09507116.2016.1218603 CrossRefGoogle Scholar
  4. 4.
    Jiang F et al (2016) Hollow cathode centered negative pressure arc. Weld J 95:395-s–408-sGoogle Scholar
  5. 5.
    Lv SX, Xu ZW, Wang HT, Yang SQ (2008) Investigation on TIG cladding of copper alloy on steel plate. Sci Technol Weld Join 13:10–16.  https://doi.org/10.1179/174329307X249414 CrossRefGoogle Scholar
  6. 6.
    e Silva RHG, dos Santos Paes LE, Okuyama MP, de Sousa GL, Viviani AB, Cirino LM, Schwedersky MB (2018) TIG welding process with dynamic feeding: a characterization approach. Int J Adv Manuf Technol 96:4467–4475.  https://doi.org/10.1007/s00170-018-1929-6 CrossRefGoogle Scholar
  7. 7.
    Sasi AYB, Gu F, Li Y, Ball AD (2006) A validated model for the prediction of rotor bar failure in squirrel-cage motors using instantaneous angular speed. Mech Syst Signal Process 20:1572–1589.  https://doi.org/10.1016/j.ymssp.2005.09.010 CrossRefGoogle Scholar
  8. 8.
    Girardin F, Rémond D, Rigal JF (2010) Tool wear detection in milling-an original approach with a non-dedicated sensor. Mech Syst Signal Process 24:1907–1920.  https://doi.org/10.1016/j.ymssp.2010.02.008 CrossRefGoogle Scholar
  9. 9.
    Gubran AA, Sinha JK (2014) Shaft instantaneous angular speed for blade vibration in rotating machine. Mech Syst Signal Process 44:47–59.  https://doi.org/10.1016/j.ymssp.2013.02.005 CrossRefGoogle Scholar
  10. 10.
    Li B, Zhang X, Wu J (2017) New procedure for gear fault detection and diagnosis using instantaneous angular speed. Mech Syst Signal Process 85:415–428.  https://doi.org/10.1016/j.ymssp.2016.08.036 CrossRefGoogle Scholar
  11. 11.
    Renaudin L, Bonnardot F, Musy O, Doray JB, Rémond D (2010) Natural roller bearing fault detection by angular measurement of true instantaneous angular speed. Mech Syst Signal Process 24:1998–2011.  https://doi.org/10.1016/j.ymssp.2010.05.005 CrossRefGoogle Scholar
  12. 12.
    Jiménez Espadafor FJ, Becerra Villanueva JA, Palomo Guerrero D et al (2014) Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine. Mech Syst Signal Process 49:135–153.  https://doi.org/10.1016/j.ymssp.2014.04.016 CrossRefGoogle Scholar
  13. 13.
    Lamraoui M, Thomas M, El Badaoui M, Girardin F (2014) Indicators for monitoring chatter in milling based on instantaneous angular speeds. Mech Syst Signal Process 44:72–85.  https://doi.org/10.1016/j.ymssp.2013.05.002 CrossRefGoogle Scholar
  14. 14.
    Rafieian F, Girardin F, Liu Z, Thomas M, Hazel B (2014) Angular analysis of the cyclic impacting oscillations in a robotic grinding process. Mech Syst Signal Process 44:160–176.  https://doi.org/10.1016/j.ymssp.2013.05.005 CrossRefGoogle Scholar
  15. 15.
    Rudy JF (2015) Development and application of dabber gas tungsten arc welding for repair of aircraft engine. Seal Teeth 2–5Google Scholar
  16. 16.
    Figueirôa DW, Pigozzo IO, Silva RHGE et al (2017) Influence of welding position and parameters in orbital tig welding applied to low-carbon steel pipes. Weld Int 31:583–590.  https://doi.org/10.1080/09507116.2016.1218615 CrossRefGoogle Scholar
  17. 17.
    Madsen O, Wilson M (2007) TIP TIG: new technology for welding. Ind Robot An Int J 34:462–466.  https://doi.org/10.1108/01439910710832057 CrossRefGoogle Scholar
  18. 18.
    Cheng P, Mustafa MSM, Oelmann B (2012) Contactless rotor RPM measurement using laser mouse sensors. IEEE Trans Instrum Meas 61:740–748.  https://doi.org/10.1109/TIM.2011.2169612 CrossRefGoogle Scholar
  19. 19.
    Kamphuis WPH (2007) Using optical mouse sensors for sheet position measurement. Techische Universiteit Eindhoven, Eindhoven, Traineeship ReportGoogle Scholar
  20. 20.
    Zheng D, Zhang S, Wang S et al (2015) A capacitive rotary encoder based on quadrature modulation and demodulation. IEEE Trans Instrum Meas 64:143–153.  https://doi.org/10.1109/TIM.2014.2328456 CrossRefGoogle Scholar
  21. 21.
    Bahn W, Nam JH, Lee SH, Cho DD (2016) Digital optoelectrical pulse method for vernier-type rotary encoders. IEEE Trans Instrum Meas 65:431–440.  https://doi.org/10.1109/TIM.2015.2502878 CrossRefGoogle Scholar
  22. 22.
    Attaianese C, Tomasso G (2007) Position measurement in industrial drives by means of low-cost resolver-to-digital converter. IEEE Trans Instrum Meas 56:2155–2159.  https://doi.org/10.1109/TIM.2007.908120 CrossRefGoogle Scholar
  23. 23.
    Wu ST, Chen JY, Wu SH (2014) A rotary encoder with an eccentrically mounted ring magnet. IEEE Trans Instrum Meas 63:1907–1915.  https://doi.org/10.1109/TIM.2014.2302243 CrossRefGoogle Scholar
  24. 24.
    El Badaoui M, Bonnardot F (2014) Impact of the non-uniform angular sampling on mechanical signals. Mech Syst Signal Process 44:199–210.  https://doi.org/10.1016/j.ymssp.2013.10.008 CrossRefGoogle Scholar
  25. 25.
    Boggarpu NK, Kavanagh RC (2010) New learning algorithm for high-quality velocity measurement and control when using low-cost optical encoders. IEEE Trans Instrum Meas 59:565–574.  https://doi.org/10.1109/TIM.2009.2025064 CrossRefGoogle Scholar
  26. 26.
    Li Y, Gu F, Harris G, Ball A, Bennett N, Travis K (2005) The measurement of instantaneous angular speed. Mech Syst Signal Process 19:786–805.  https://doi.org/10.1016/j.ymssp.2004.04.003 CrossRefGoogle Scholar
  27. 27.
    kumar RS, Mohanty AR (2017) Use of rotary optical encoder for firing detection in a spark ignition engine. Meas J Int Meas Confed 98:60–67.  https://doi.org/10.1016/j.measurement.2016.11.026 Google Scholar
  28. 28.
    Quintáns C, Fariña J, Marcos-Acevedo J (2016) Improving the performance of incremental encoders with conditioning circuits based on FPGA. Meas J Int Meas Confed 90:1–3.  https://doi.org/10.1016/j.measurement.2016.04.031 CrossRefGoogle Scholar
  29. 29.
    Halliday D, Resnick R, Walker J (2008) Fundamentals of PhysicsGoogle Scholar
  30. 30.
    Cheney W, Kincaid D (2003) Numerical Mathematics and ComputingGoogle Scholar
  31. 31.
    Gonçalves AA, Sousa AR (2008) Fundamentos de metrologia científica e industrial [Fundamentals of scientific and industrial metrology]Google Scholar
  32. 32.
    Kumagai M, Hollis RL (2011) Development of a three-dimensional ball rotation sensing system using optical mouse sensors. Proc - IEEE Int Conf Robot Autom 5038–5043. doi:  https://doi.org/10.1109/ICRA.2011.5979899

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Régis Henrique Gonçalves e Silva
    • 1
  • Luiz Eduardo dos Santos Paes
    • 1
    Email author
  • Gustavo Luis de Sousa
    • 1
  • Cleber Marques
    • 1
  • Alberto Bonamigo Viviani
    • 1
  • Mateus Barancelli Schwedersky
    • 1
  • Tiago Loureiro Fígaro da Costa Pinto
    • 1
  1. 1.Department of Mechanical Engineering, Welding LaboratoryFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations