Hafnium and vanadium nitride multilayer coatings [HfN/VN]n deposited onto HSS cutting tools for dry turning of a low carbon steel: a tribological compatibility case study

  • J. H. Navarro-DeviaEmail author
  • C. Amaya
  • J. C. Caicedo
  • J. H. Martínez
  • W. AperadorEmail author


This paper shows tribological compatibility enhancement in dry turning of a low carbon steel (AISI 1020) with High-speed steel cutting tools, due to physical vapor deposition (PVD) of hafnium and vanadium nitride multilayer coatings ([HfN/VN]n), with different bilayer number system in each tool (n = 1, n = 30, n = 50, and n = 80). Tool wear mechanisms were assessed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques, and surface integrity by roughness measurement and SEM inspection. Results show these multilayer coatings increase tool life up to 43%, and modify contact at tool/workpiece interface, as a function of bilayer number (n), due to their outstanding mechanical and tribological properties as a low coefficient of friction, high thermal conductivity, and high hardness; this produces a decrease of chip compression ratio, from 3.6 to 2.7, and workpiece roughness almost 1.6 μm lesser with the tool [HfN/VN]80. Moreover, improvement of workpiece integrity includes its corrosion resistance, from a corrosion rate of 1.5 mmy, which decrease exponentially with higher bilayer number, to a corrosion rate lower than 0.1 mmy obtained with 80 bilayers, due to the change of chip morphology. Therefore, [HfN/VN]n coatings could enhance productivity and quality in an industrial manufacturing application, as these protective thin films increase tribological compatibility of tool/workpiece system.


Hard coating Hafnium nitride Vanadium nitride Metal machining Tool wear Cutting tool Multilayer Tribology Surface integrity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Research data

Data will be made available on request.


This research was supported and funded by “Vicerrectoría de Investigaciones de la Universidad Militar Nueva Granada” project no. ING-2630 (validity 2018) and by Colciencias under call “Convocatoria 761Jóvenes Investigadores e Innovadores 2016.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang Z, Li X, Almandoz E, Fuentes GG, Dong H (2017) Sliding friction and wear behaviour of Titanium-Zirconium-Molybdenum (TZM) alloy against Al 2 O 3 and Si 3 N 4 balls under several environments and temperatures. Tribol Int 110:348–357. CrossRefGoogle Scholar
  2. 2.
    Gachot C, Rosenkranz A, Hsu SM, Costa HL (2017) A critical assessment of surface texturing for friction and wear improvement. Wear 372–373:21–41. CrossRefGoogle Scholar
  3. 3.
    Brooks R (2017) US cutting tool consumption fell 4.3% in 2016. Am. Mach. WklyGoogle Scholar
  4. 4.
    Brooks R (2018) US cutting tool consumption rose 8.3% for 2017. Am. Mach. WklyGoogle Scholar
  5. 5.
    Brooks R (2017) Rising machine tool orders indicate continuing expansion. Am. Mach. WklyGoogle Scholar
  6. 6.
    Brooks R (2017) Machine tool demand still strong, expanding. Am. Mach. WklyGoogle Scholar
  7. 7.
    Brooks R (2017) Latest machine tool orders show manufacturing still expanding. Am. Mach. WklyGoogle Scholar
  8. 8.
    Veldhuis SC, Dosbaeva GK, Yamamoto K (2009) Tribological compatibility and improvement of machining productivity and surface integrity. Tribol Int 42:1004–1010. CrossRefGoogle Scholar
  9. 9.
    Vereschaka A, Aksenenko A, Sitnikov N, Migranov M, Shevchenko S, Sotova C, Batako A, Andreev N (2018) Effect of adhesion and tribological properties of modified composite nano-structured multi-layer nitride coatings on WC-Co tools life. Tribol Int 128:313–327. CrossRefGoogle Scholar
  10. 10.
    Davies MA, Ueda T, M’Saoubi R et al (2007) On the measurement of temperature in material removal processes. CIRP Ann - Manuf Technol 56:581–604. CrossRefGoogle Scholar
  11. 11.
    Bobzin K (2017) High-performance coatings for cutting tools. CIRP J Manuf Sci Technol 18:1–9. CrossRefGoogle Scholar
  12. 12.
    Paiva J, Fox-Rabinovich G, Locks Junior E, Stolf P, Seid Ahmed Y, Matos Martins M, Bork C, Veldhuis S (2018) Tribological and wear performance of nanocomposite PVD hard coatings deposited on aluminum die casting tool. Materials (Basel) 11:358. CrossRefGoogle Scholar
  13. 13.
    Yamamoto K, Abdoos M, Paiva J, Stolf P, Beake B, Rawal S, Fox-Rabinovich G, Veldhuis S (2018) Cutting performance of low stress thick TiAlN PVD coatings during machining of compacted graphite cast iron (CGI). Coatings 8:38. CrossRefGoogle Scholar
  14. 14.
    Vereschaka A, Kataeva E, Sitnikov N, Aksenenko A, Oganyan G, Sotova C (2018) Influence of thickness of multilayered nano-structured coatings Ti-TiN-(TiCrAl) N and Zr-ZrN-(ZrCrNbAl) N on tool life of metal cutting tools at various cutting speeds. Coatings 8:44. CrossRefGoogle Scholar
  15. 15.
    Sui X, Li G, Jiang C, Wang K, Zhang Y, Hao J, Wang Q (2018) Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting. Ceram Int 44:5629–5635. CrossRefGoogle Scholar
  16. 16.
    Kong Y, Tian X, Gong C, Chu PK (2018) Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing. Surf Coatings Technol 344:204–213. CrossRefGoogle Scholar
  17. 17.
    Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL, Bondar OV, Konarski P, Załęski K, Jurga S, Coy E (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94. CrossRefGoogle Scholar
  18. 18.
    Maksakova O, Simoẽs S, Pogrebnjak A, Bondar O, Kravchenko Y, Beresnev V, Erdybaeva N (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196. CrossRefGoogle Scholar
  19. 19.
    Li H-Y, He H-B, Han W-Q, Yang J, Gu T, Li YM, Lyu SK (2015) A study on cutting and tribology performances of TiN and TiAlN coated tools. Int J Precis Eng Manuf 16:781–786. CrossRefGoogle Scholar
  20. 20.
    Chang Y-Y, Chang H, Jhao L-J, Chuang C-C (2018) Tribological and mechanical properties of multilayered TiVN/TiSiN coatings synthesized by cathodic arc evaporation. Surf Coatings Technol 350:1071–1079. CrossRefGoogle Scholar
  21. 21.
    Tillmann W, Lopes Dias NF, Stangier D (2018) Effect of Hf on the microstructure, mechanical properties, and oxidation behavior of sputtered CrAlN films. Vacuum 154:208–213. CrossRefGoogle Scholar
  22. 22.
    Shypylenko A, Lisovenko M, Belovol K, et al (2017) Effect of Hf addition and deposition condition on the structure and properties of the Ti-Hf-Si-N coatings. In: 2017 IEEE 7th international conference nanomaterials: application & properties (NAP). IEEE, p 02NTF32-1-02NTF32-5Google Scholar
  23. 23.
    Stanciu I, Predoana L, Preda S, Calderon-Moreno JM, Stoica M, Anastasescu M, Gartner M, Zaharescu M (2017) Synthesis method and substrate influence on TiO 2 films doped with low vanadium content. Mater Sci Semicond Process 68:118–127. CrossRefGoogle Scholar
  24. 24.
    Chang S-Y, Chen B-J, Hsiao Y-T, Wang DS, Chen TS, Leu MS, Lai HJ (2018) Preparation and nanoscopic plastic deformation of toughened Al-Cu-Fe-based quasicrystal/vanadium multilayered coatings. Mater Chem Phys 213:277–284. CrossRefGoogle Scholar
  25. 25.
    Piedrahita WF, Aperador W, Caicedo JC, Prieto P (2017) Evolution of physical properties in hafnium carbonitride thin films. J Alloys Compd 690:485–496. CrossRefGoogle Scholar
  26. 26.
    Song J, Cao L, Jiang L, Liang G, Gao J, Li D, Wang S, Lv M (2018) Effect of HfN, HfC and HfB 2 additives on phase transformation, microstructure and mechanical properties of ZrO 2-based ceramics. Ceram Int 44:5371–5377. CrossRefGoogle Scholar
  27. 27.
    Contreras E, Galindez Y, Rodas MA, Bejarano G, Gómez MA (2017) CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering. Surf Coatings Technol 332:214–222. CrossRefGoogle Scholar
  28. 28.
    Chang Y-Y, Weng S-Y, Chen C-H, Fu F-X (2017) High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings. Surf Coatings Technol 332:494–503. CrossRefGoogle Scholar
  29. 29.
    HongYu Y (2014) Hafnium: chemical characteristics, production and applications., 1st ed. NovaGoogle Scholar
  30. 30.
    Kelly PW (1984) Advantages of titanium nitride coated gear tools. Gear Technol 1:12–23 ,48Google Scholar
  31. 31.
    Fox-Rabinovich GS, Kovalev AI, Afanasyev SN (1996) Characteristic features of wear in tools made of high-speed steels with surface engineered coatings I. Wear characteristics of surface engineered high-speed steel cutting tools. Wear 201:38–44. CrossRefGoogle Scholar
  32. 32.
    Staia MH, Bhat DG, Puchi-Cabrera ES, Bost J (2006) Characterization of chemical vapor deposited HfN multilayer coatings on cemented carbide cutting tools. Wear 261:540–548. CrossRefGoogle Scholar
  33. 33.
    Mora Parada MJ (2014) Propiedades Tribocorrosivas De Monocapas De HfN, VN Y Multicapas [HfN/VN] n depositadas sobre acero AISI 4140. UPTC Google Scholar
  34. 34.
    Escobar C, Villarreal M, Caicedo JC et al (2013) Mechanical and tribological behavior of VN and HfN films deposited via reactive magnetron sputtering. Surf Rev Lett 20:1350040. CrossRefGoogle Scholar
  35. 35.
    Escobar CA, Caicedo JC, Aperador W (2014) Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size. J Phys Chem Solids 75:23–30. CrossRefGoogle Scholar
  36. 36.
    Escobar C, Villarreal M, Caicedo JC, Aperador W, Caicedo HH, Prieto P (2013) Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides] n structures. Thin Solid Films 545:194–199. CrossRefGoogle Scholar
  37. 37.
    Escobar C, Villarreal M, Caicedo JC, Aperador W, Prieto P (2014) Mechanical properties of steel surfaces coated with HfN/VN superlattices. J Mater Eng Perform 23:3963–3974. CrossRefGoogle Scholar
  38. 38.
    Escobar C, Caicedo JC, Caicedo HH, Mozafari M (2014) Design of hard surfaces with metal (Hf/V) nitride multinanolayers. J Superhard Mater 36:366–380. CrossRefGoogle Scholar
  39. 39.
    Escobar C, Caicedo JC, Aperador W et al (2013) Improve on corrosion resistant surface for AISI 4140 steel coated with VN and HfN single layer films. Int J Electrochem Sci 8:7591–7607Google Scholar
  40. 40.
    Escobar C, Villarreal M, Caicedo JC, Aperador W, Prieto P (2013) Novel performance in physical and corrosion resistance HfN/VN coating system. Surf Coatings Technol 221:182–190. CrossRefGoogle Scholar
  41. 41.
    Caicedo JC, Escobar C, Aperador W, Caicedo HH, Prieto P (2015) Heterostructures design for Hf-Nitride/V-Nitride system. J Phys Chem Solids 87:87–94. CrossRefGoogle Scholar
  42. 42.
    Arranz A (2004) Synthesis of hafnium nitride films by 0.5–5 keV nitrogen implantation of metallic Hf: an X-ray photoelectron spectroscopy and factor analysis study. Surf Sci 563:1–12. CrossRefGoogle Scholar
  43. 43.
    Pierson HO (1996) Handbook of refractory carbides & nitrides: properties, characteristics, and applications. Noyes Publications, New JerseyGoogle Scholar
  44. 44.
    Storms EK (1972) Phases relationships and electrical properties of refractory carbides and nitrides. Solid State Chem 10Google Scholar
  45. 45.
    Escobar C, Caicedo HH, Caicedo JC (2016) Hafnium and vanadium nitride heterostrutures applied to machining devices. Int J Adv Manuf Technol 82:369–378. CrossRefGoogle Scholar
  46. 46.
    Escobar C, Villarreal Montenegro MS, Caicedo JC et al (2014) Tribological and wear behavior of HfN/VN nanomultilayer coated cutting tools. Ing e Investig 34:22–28. Google Scholar
  47. 47.
    Escobar Claros CA, Villarreal Montenegro MS (2011) Obtención y Caracterización De Recubrimientos De HfN, VN Y HfN/VN Para Su Aplicación En La Industria Metalmecánica. Universidad del ValleGoogle Scholar
  48. 48.
    Navarro-Devia JH, Amaya C, Caicedo JC, Aperador W (2017) Performance evaluation of HSS cutting tool coated with hafnium and vanadium nitride multilayers, by temperature measurement and surface inspection, on machining AISI 1020 steel. Surf Coatings Technol 332:484–493. CrossRefGoogle Scholar
  49. 49.
    Navarro-Devia JH, Aperador WA, Delgado A (2016) Performance evaluation of monolayer hafnium nitride coated tool for cutting | Evaluación del Desempeño de Buriles con Recubrimiento Monocapas de Nitruro de Hafnio en el Proceso de Mecanizado. Inf Tecnol 27:.
  50. 50.
    Navarro-Devia JH, Aperador WA, Delgado A (2017) Machining on AISI 1020 using monolayer vanadium nitride coated tool bit // Mecanizado de Acero AISI1020, Utilizando Buriles con Recubrimiento Monocapa de Nitruro de Vanadio. Inf tecnológica 28:77–86. CrossRefGoogle Scholar
  51. 51.
    Guzman Durán PA, Navarro-Devia JH, Aperador W (2016) Machining with cutting tool coated with monolayer of HfN. TECCIENCIA (21):1–6.
  52. 52.
    Navarro-Devia JH, Chaparro WA, Lizarazo JC (2016) Evaluation of single layer hafnium nitride coated tool for metal cutting. MRS Proc 1815:imrc2015.17. CrossRefGoogle Scholar
  53. 53.
    Navarro-Devia JH, Duque J, Aperador W, Amaya Hoyos CA (2016) Novel approach to evaluate the performance of [HfN/VN] n multilayer hard coatings deposited on cutting tools. In: XXV International Materials Research Congress 2016. CONACYT MRS-Mexico, CancunGoogle Scholar
  54. 54.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. CrossRefGoogle Scholar
  55. 55.
    Baker SP, Liu J (2016) Nanoindentation techniques. In: Reference module in materials science and materials engineering. ElsevierGoogle Scholar
  56. 56.
    Caicedo JC, Zambrano OA, Aperador W (2018) Improvement of the useful life of the machining tool with the carbonitrides multilayer system. Int J Adv Manuf Technol 96:3263–3277. CrossRefGoogle Scholar
  57. 57.
    Caicedo JC, Aperador W, Amaya C (2017) Determination of physical characteristic in vanadium carbon nitride coatings on machining tools. Int J Adv Manuf Technol 91:1227–1241. CrossRefGoogle Scholar
  58. 58.
    Fox-Rabinovich G, Kovalev A, Aguirre MH, Yamamoto K, Veldhuis S, Gershman I, Rashkovskiy A, Endrino JL, Beake B, Dosbaeva G, Wainstein D, Yuan J, Bunting JW (2014) Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions. Appl Surf Sci 297:22–32. CrossRefGoogle Scholar
  59. 59.
    Yuan J, Dosbaeva J, Covelli D, Boyd J, Fox-Rabinovich GS, Veldhuis SC (2018) Study of tribofilms generation at different cutting speeds in dry machining hardened AISI T1 and AISI D2 steel. Proc Inst Mech Eng Part J J Eng Tribol 232:910–918. CrossRefGoogle Scholar
  60. 60.
    Shihab SK, Khan ZA, Mohammad A, Siddiqueed AN (2014) RSM based study of cutting temperature during hard turning with multilayer coated carbide insert. Procedia Mater Sci 6:1233–1242. CrossRefGoogle Scholar
  61. 61.
    Rahim EA, Ibrahim MR, Rahim AA, Aziz S, Mohid Z (2015) Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique. Procedia CIRP 26:351–354. CrossRefGoogle Scholar
  62. 62.
    Abhang LB, Hameedullah M (2012) Selection of lubricant using combined multiple attribute decision- making method. Adv Prod Eng Manag 7:39Google Scholar
  63. 63.
    Brzezinka T, Rao J, Chowdhury M, Kohlscheen J, Fox Rabinovich G, Veldhuis S, Endrino J (2017) Hybrid Ti-MoS2 coatings for dry machining of aluminium alloys. Coatings 7:149. CrossRefGoogle Scholar
  64. 64.
    Fox-Rabinovich G, Dasch JM, Wagg T, Yamamoto K, Veldhuis S, Dosbaeva GK, Tauhiduzzaman M (2011) Cutting performance of different coatings during minimum quantity lubrication drilling of aluminum silicon B319 cast alloy. Surf Coatings Technol 205:4107–4116. CrossRefGoogle Scholar
  65. 65.
    Kalpakjian S, Schmid SR (2014) Machining processes: turning and hole making. In: Manufacturing engineering and technology, 7th ed. Prentice Hall, Prentice Hall, pp 625–667Google Scholar
  66. 66.
    Kishore DSC, Rao KP, Mahamani A (2014) Investigation of cutting force, surface roughness and flank wear in turning of in-situ Al6061-TiC metal matrix composite. Procedia Mater Sci 6:1040–1050. CrossRefGoogle Scholar
  67. 67.
    Kalpakjian S, Schmid SR (2014) Surface roughness and measurement; friction, wear and lubrication. In: Manufacturing engineering and technology, 7th edn. Prentice Hall, New York, pp 963–984Google Scholar
  68. 68.
    ISO (1993) ISO3685:1993. Tool-life testing with single-point turning tools Google Scholar
  69. 69.
    Shalaby M, Veldhuis S (2018) New observations on high-speed machining of hardened AISI 4340 steel using alumina-based ceramic tools. J Manuf Mater Process 2:27. Google Scholar
  70. 70.
    Das SR, Panda A, Dhupal D (2017) Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during machining of hardened AISI 4340 steel with coated carbide insert. Mech Adv Mater Mod Process 3(9).
  71. 71.
    Binder M, Klocke F, Doebbeler B (2017) Abrasive wear behavior under metal cutting conditions. Wear 376–377:165–171. CrossRefGoogle Scholar
  72. 72.
    Nuñez PJ, Luis CJ, González C, Sebastian MA (2002) Estudio Comparativo de la Rugosidad Geometrica Obtenible en Procesos de Torneado // Comparative study of geometric roughness obtained in turning processes. Inf tecnológica 13:111–117Google Scholar
  73. 73.
    Shalaby MA, El Hakim MA, Abdelhameed MM et al (2014) Wear mechanisms of several cutting tool materials in hard turning of high carbon–chromium tool steel. Tribol Int 70:148–154. CrossRefGoogle Scholar
  74. 74.
    Barry J, Byrne G (2002) The mechanisms of chip formation in machining hardened steels. J Manuf Sci Eng 124:528. CrossRefGoogle Scholar
  75. 75.
    Shalaby MA, El Hakim MA, Veldhuis SC, Dosbaeva GK (2017) An investigation into the behavior of the cutting forces in precision turning. Int J Adv Manuf Technol 90:1605–1615. CrossRefGoogle Scholar
  76. 76.
    Dosbaeva GK, El Hakim MA, Shalaby MA et al (2015) Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int J Refract Met Hard Mater 50:1–8. CrossRefGoogle Scholar
  77. 77.
    Kumar CS, Patel SK (2018) Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surf Coatings Technol 334:509–525. CrossRefGoogle Scholar
  78. 78.
    TechMiny (2017) Types of chips in metal cutting to provide good surface finish & more. Accessed 11 Jul 2018
  79. 79.
    Kalpakjian S, Schmid SR (2014) Fundaments of machining. In: Manufacturing engineering and technology, 7th edn. Prentice Hall, New York, pp 566–599Google Scholar
  80. 80.
    Trent EM, Wright PK (2000) The essential features of metal cutting. In: Butterworth-Heinemann (ed) Metal cutting, 4th ed. Elsevier, pp 21–55Google Scholar
  81. 81.
    Paiva JM, Shalaby MAM, Chowdhury M, Shuster L, Chertovskikh S, Covelli D, Junior EL, Stolf P, Elfizy A, Bork CAS, Fox-Rabinovich G, Veldhuis SC (2017) Tribological and wear performance of carbide tools with TiB2 PVD coating under varying machining conditions of TiAl6V4 aerospace alloy. Coatings 7:187. CrossRefGoogle Scholar
  82. 82.
    El Hakim MA, Abad MD, Abdelhameed MM et al (2011) Wear behavior of some cutting tool materials in hard turning of HSS. Tribol Int 44:1174–1181. CrossRefGoogle Scholar
  83. 83.
    Kalpakjian S, Schmid SR (2014) Quality assurance, testing, and inspection. In: Manufacturing engineering and technology, 7th edn. Prentice Hall, New York, pp 1030–1056Google Scholar
  84. 84.
    Shi Y, Yang B, Liaw P (2017) Corrosion-resistant high-entropy alloys: a review. Metals (Basel) 7:43. CrossRefGoogle Scholar
  85. 85.
    Askeland DR, Fulay PP, Wright WJ (2011) The science and engineering of materials, 6th ed. International Thomson, StamfordGoogle Scholar
  86. 86.
    Kajdas C, Harvey SSK, Wilusz E (1990) Encyclopedia of tribology, 1st ed. Elsevier, AmsterdamGoogle Scholar
  87. 87.
    Yuan J, Yamamoto K, Covelli D, Tauhiduzzaman M, Arif T, Gershman IS, Veldhuis SC, Fox-Rabinovich GS (2016) Tribo-films control in adaptive TiAlCrSiYN/TiAlCrN multilayer PVD coating by accelerating the initial machining conditions. Surf Coatings Technol 294:54–61. CrossRefGoogle Scholar
  88. 88.
    Smith GT (2008) 7.7 tool wear and life. In: Cutting tool technology: industrial handbook. Springer London, London, pp 330–342Google Scholar
  89. 89.
    Chowdhury MSI, Chowdhury S, Yamamoto K, Beake BD, Bose B, Elfizy A, Cavelli D, Dosbaeva G, Aramesh M, Fox-Rabinovich GS, Veldhuis SC (2017) Wear behaviour of coated carbide tools during machining of Ti6Al4V aerospace alloy associated with strong built up edge formation. Surf Coatings Technol 313:319–327. CrossRefGoogle Scholar
  90. 90.
    Fox-Rabinovich G, Weatherly GC, Kovalev A (2004) Tribology and the design of surface-engineered materials for cutting tool applications. In: Totten G, Xie L, Funatani K (eds) Modeling and simulation for material selection and mechanical design. Marcel Dekker, Inc., New York, USAGoogle Scholar
  91. 91.
    Fox-Rabinovich G, Gershman I, Hakim M, Shalaby M, Krzanowski J, Veldhuis S (2014) Tribofilm formation as a result of complex interaction at the tool/chip Interface during cutting. Lubricants 2:113–123. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringUniversidad Militar Nueva GranadaBogotáColombia
  2. 2.Development of Materials and Products Research Group, CDT- ASTIN SENACaliColombia
  3. 3.Tribology, Powder Metallurgy, and Processing of Solid Waste Research GroupUniversidad del ValleCaliColombia

Personalised recommendations