Advertisement

Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments

  • Uzair Khaleeq uz ZamanEmail author
  • Emilien Boesch
  • Ali Siadat
  • Mickael Rivette
  • Aamer Ahmed Baqai
ORIGINAL ARTICLE
  • 98 Downloads

Abstract

The control of process parameters to customize a part has been a value-added ability related to additive manufacturing (AM). In this paper, parametric optimization of fused deposition modeling (FDM) process is performed using Taguchi design of experiments (DOE). Two sets of experiments were conducted on an industrial case study from the aerospace industry to assess the impact of FDM process parameters: layer thickness, shells, infill pattern, and infill percentage, on the compressive strength of the case study. A generic methodology was also proposed. Analysis of variance (ANOVA) and signal-to-noise (S/N) ratio analysis were performed to evaluate the importance of experimental error, finding the optimal combination of process parameters for maximizing the compressive strength, and assessing the robustness of the design. The paper concluded with the display of results, discussion, and conclusions drawn.

Keywords

Additive manufacturing Design of Experiments Fused deposition modeling Taguchi approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the Lorraine Fab Living Lab, Nancy, France for printing the drilling grids with PETG material.

References

  1. 1.
    ASTM (2012) Standard terminology for additive manufacturing technologies. Standard F2792-12a, ASTM International. West Conshohocken, PA.  https://doi.org/10.1520/F2792-10 Google Scholar
  2. 2.
    Ahuja B, Karg M, Schmidt M (2015) Additive manufacturing in production: challenges and opportunities. SPIE LASE, International Society for Optics and Photonics, doi:  https://doi.org/10.1117/12.2082521
  3. 3.
    Whitney DE (1988) Manufacturing by design. Harv Bus Rev 66(4):83–91Google Scholar
  4. 4.
    Rosen DW (2007) Computer-aided design for additive manufacturing of cellular structures. Computer Aided Design and Applications 4(5):585–594MathSciNetCrossRefGoogle Scholar
  5. 5.
    Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. J Mech Industry 13:89–96CrossRefGoogle Scholar
  6. 6.
    Pilipovic A, Raos P, Sercer M (2009) Experimental analysis of properties of materials for rapid prototyping. Int J Adv Manuf Technol 40:105–115CrossRefGoogle Scholar
  7. 7.
    Zaman UKU, Rivette M, Siadat A, Mousavi SM (2018) Integrated product-process design: material and manufacturing process selection for additive manufacturing using multi-criteria decision making. Robot Comput Integr Manuf 51:169–180CrossRefGoogle Scholar
  8. 8.
    Jain PK, Pandey PM, Rao PVM (2009) Effect of delay time on part strength in selective laser sintering. Int J Adv Manuf Technol 43:117–126.  https://doi.org/10.1007/s00170-008-1682-3 CrossRefGoogle Scholar
  9. 9.
    Chockalingam K, Jawahar N, Chandrasekar U, Ramanathan KN (2008) Establishment of process model for part strength in stereolithography. J Mater Process Technol 208:348–365.  https://doi.org/10.1016/j.jmatprotec.2007.12.144 CrossRefGoogle Scholar
  10. 10.
    Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations and constraints. CIRP Ann Manuf Technol 65:737–760CrossRefGoogle Scholar
  11. 11.
    Srivastava M, Rathee S (2018) Optimization of FDM process parameters by Taguchi method for imparting customized properties to components. Virtual and Physical Prototyping 13:203–210.  https://doi.org/10.1080/17452759.2018.1440722 CrossRefGoogle Scholar
  12. 12.
    Patel JP, Patel CP, Patel UJ (2012) A review on various approach for process parameter optimization of fused deposition modeling (FDM) process and Taguchi approach for optimization. Int J Eng Res Appl 2(2):361–365Google Scholar
  13. 13.
    Wiedemann B, Jantzen HA (1999) Strategies and applications for rapid product and process development in Daimler-benz AG. J Comp Industry 39(1):11–25CrossRefGoogle Scholar
  14. 14.
    Upcraft S, Fletcher R (2003) The rapid prototyping technologies. J Rapid Prototyping 23(4):318–330Google Scholar
  15. 15.
    Bellehumeur C, Li L, Sun Q, Gu P (2004) Modeling of bond formation between polymer filaments in the fused deposition modeling process. J Manuf Process 6(2):170–178CrossRefGoogle Scholar
  16. 16.
    Thirmurthulu K, Pandey PM, Venkata RN (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6):585–594CrossRefGoogle Scholar
  17. 17.
    Masood SH (1996) Intelligent rapid prototyping with fused deposition modeling. J Rapid Prototyping 2(1):24–33CrossRefGoogle Scholar
  18. 18.
    Groza JR, Shackelford JF (2010) Materials processing handbook. CRC Press, Boca RatonGoogle Scholar
  19. 19.
    Ali F, Chowdary BV, Maharaj J (2014) Influence of some process parameters on build time, material consumption, and surface roughness of FDM processed parts: inferences based on the Taguchi design of experiments. Proceedings of the 2014 IAJC/ISAM Joint International Conference, ISBN: 978-1-60643-379-9Google Scholar
  20. 20.
    Mohamed OA, Masood SH, Bhowmik JL (2014) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Int J Adv Manuf 3:42–53.  https://doi.org/10.1007/s40436-014-0097-7 CrossRefGoogle Scholar
  21. 21.
    Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169:54–61CrossRefGoogle Scholar
  22. 22.
    Dakshinamurthy D, Gupta S (2016) A study on the influence of process parameters on the viscoelastic properties of ABS components manufactured by FDM process. J Instit Eng (India) – Series C 99:133–138.  https://doi.org/10.1007/s40032-016-0324-z CrossRefGoogle Scholar
  23. 23.
    Wang TM, Xi JT, Jin Y (2007) A model research for prototype warp deformation in the FDM process. Int J Adv Manuf Technol 33:1087–1096CrossRefGoogle Scholar
  24. 24.
    Ahn SH, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modelling ABS. Rapid Prototyp J 8(4):248–257CrossRefGoogle Scholar
  25. 25.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295CrossRefGoogle Scholar
  26. 26.
    Sood AK, Ohdar RK, Mahapatra SS (2012) Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J Adv Res 3(1):81–90CrossRefGoogle Scholar
  27. 27.
    Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. J Virtual Physic Prototyping 12(1):47–59CrossRefGoogle Scholar
  28. 28.
    Horvath D, Noorani R, Mendelson M (2007) Improvement of surface roughness on ABS 400 polymer using design of experiments (DOE). Mater Sci Forum 561:2389–2392CrossRefGoogle Scholar
  29. 29.
    Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):209–519Google Scholar
  30. 30.
    Rangisetty S (2017) The effect of infill patterns and annealing on mechanical properties of additively manufactured thermoplastic composites, Proceedings of the ASME 2017 conference on smart materials, adaptive structures and intelligent systems, doi:  https://doi.org/10.1115/smasis2017-4011
  31. 31.
    Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19):3838–3842Google Scholar
  32. 32.
    Dong G, Wijaya G, Tang Y, Zhao YF (2018) Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit Manuf 19:62–72CrossRefGoogle Scholar
  33. 33.
    Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):618–627CrossRefGoogle Scholar
  34. 34.
    Anitha R, Arunachalam S, Radhakrishnan P (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol 118(1–3):385–388CrossRefGoogle Scholar
  35. 35.
    Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerging Technol 1(2):106–111Google Scholar
  36. 36.
    Zhang JW, Peng AH (2012) Process-parameter optimization for fused deposition modelling based on Taguchi method. Adv Mater Res 538:444–447CrossRefGoogle Scholar
  37. 37.
    Nancharaiah T (2011) Optimization of process parameters in FDM process using design of experiments. Int J Emerg Technol 2(1):100–102Google Scholar
  38. 38.
    Peace GS (1993) Taguchi methods, a hands-on approach. Addison-Wesley Publishing Company, Reading, MAGoogle Scholar
  39. 39.
    Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers, DearbornGoogle Scholar
  40. 40.
    Chockalingam K, Jawahar N, Ramanathan KN, Banarjee PS (2006) Optimization of stereolithography process parameters for part strength using design of experiments. Int J Adv Manuf Technol 29:79–88CrossRefGoogle Scholar
  41. 41.
    ASTM (2015) Standard test method for compressive properties of rigid plastics. ASTM International, West Conshohocken, PA, USA, pp 19428–12959.  https://doi.org/10.1520/D0695-15 Google Scholar
  42. 42.
    Montgomery C (2001) Introduction to statistical quality control, 3rd (edn) edn. Wiley, New YorkGoogle Scholar
  43. 43.
    Zaman UKU, Rivette M, Siadat A, Baqai AA (2018) Integrated design-oriented framework for resource selection in additive manufacturing. Procedia CIRP 70:96–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Uzair Khaleeq uz Zaman
    • 1
    • 2
    Email author
  • Emilien Boesch
    • 1
  • Ali Siadat
    • 1
  • Mickael Rivette
    • 1
  • Aamer Ahmed Baqai
    • 2
  1. 1.Laboratoire de Conception Fabrication CommandeEcole Nationale Supérieure d’Arts et MétiersMetzFrance
  2. 2.National University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations