A chatter mitigation technique in milling based on H-ADDPMS and piezoelectric stack actuators

  • Fei Shi
  • Hongrui CaoEmail author
  • Xingwu Zhang
  • Xuefeng Chen


Chatter is a kind of self-excited vibration which may occur in the milling process and has several negative effects such as poor surface quality and severe tool wear. This paper presents an active chatter control method based on H almost disturbance decoupling problem with measurement feedback and with internal stability (H-ADDPMS) and piezoelectric stack actuators. First, a milling process model considering regenerative effect is constructed to find out the milling conditions when chatter occurs. Then, the whole active control system and constructing procedure of an active controller based on H-ADDPMS is proposed. Next, the milling process is simulated and the H-ADDPMS controller is calculated based on cutting force coefficient identification, frequency response experiments, and modal analysis technique. Finally, the active control experiment is carried out on a computer numerical control (CNC) milling machine to verify the feasibility and effectiveness of the proposed active control strategy.


Chatter Active control H almost disturbance decoupling Disturbance rejection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work is supported by the National Natural Science Foundation of China (Nos. 51575423, 11772244), the Fundamental Research Funds for Central University, and the Natural Science Foundation of Shaanxi Province (2017JM5120).


  1. 1.
    Taylor FW (1906) On the art of cutting metals. American Society of Mechanical Engineers pp. 248Google Scholar
  2. 2.
    Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int J Mach Tool Manu 69(3):11–19CrossRefGoogle Scholar
  3. 3.
    Cao H, Niu L, Xi S, Chen X (2018) Mechanical model development of rolling bearing-rotor systems: a review. Mech Syst Signal Process 102:37–58CrossRefGoogle Scholar
  4. 4.
    Jiang S, Zheng S (2010) A modeling approach for analysis and improvement of spindle-drawbar-bearing assembly dynamics. Int J Mach Tool Manu 50(1):131–142CrossRefGoogle Scholar
  5. 5.
    Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376CrossRefGoogle Scholar
  6. 6.
    Cao H, Li B, He Z (2012) Chatter stability of milling with speed-varying dynamics of spindles. Int J Mach Tool Manu 52(1):50–58CrossRefGoogle Scholar
  7. 7.
    Cao H, Zhou K, Chen X, Zhang X (2017) Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int J Adv Manuf Technol 92(9–12):4387–4397CrossRefGoogle Scholar
  8. 8.
    Cao H, Yue Y, Chen X, Zhang X (2017) Chatter detection based on synchrosqueezing transform and statistical indicators in milling process. Int J Adv Manuf Technol 95(1):1–12Google Scholar
  9. 9.
    Cao H, Yue Y, Chen X, Zhang X (2016) Chatter detection in milling process based on synchrosqueezing transform of sound signals. Int J Adv Manuf Technol:1–9Google Scholar
  10. 10.
    Balachandran B (2001) Nonlinear dynamics of milling processes. Philosophical Transactions Mathematical Physical & Engineering Sciences 359(1781):793–819CrossRefzbMATHGoogle Scholar
  11. 11.
    Long X, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control 16(16):1151–1168MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineer 205(7):199–203Google Scholar
  13. 13.
    Yang Y, Zhang WH, Ma YC, Wan M (2016) Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. Int J Mach Tool Manu 109:36–48CrossRefGoogle Scholar
  14. 14.
    Cao H, Zhang X, Chen X (2017) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52CrossRefGoogle Scholar
  15. 15.
    Balachandran B, Zhao MX (2000) A mechanics based model for study of dynamics of milling operations. Meccanica 35(2):89–109CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang C, Zhang X, Liu Y, Cao H, Chen X (2017) Stiffness variation method for milling chatter suppression via piezoelectric stack actuators. Int J Mach Tool Manu 124Google Scholar
  17. 17.
    Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, Stepan G (2016) Chatter suppression techniques in metal cutting. CIRP Ann 65(2):785–808CrossRefGoogle Scholar
  18. 18.
    Preumont A (1997) Vibration control of active structures, vol 2. Kluwer academic publishers, DordrechtCrossRefzbMATHGoogle Scholar
  19. 19.
    Dohner JL, Hinnerichs TD, Lauffer JP, Kwan CM, Regelbrugge ME, Shankar N (1997) Active chatter control in a milling machine. In Smart structures and materials 1997: industrial and commercial applications of smart structures technologies (Vol. 3044, pp. 281–295). International Society for Optics and PhotonicsGoogle Scholar
  20. 20.
    van Dijk NJ, van de Wouw N, Doppenberg EJ, Oosterling HA, Nijmeijer H (2012) Robust active chatter control in the high-speed milling process. IEEE Trans Control Syst Technol 20(4):901–917CrossRefGoogle Scholar
  21. 21.
    Monnin J, Kuster F, Wegener K (2014) Optimal control for chatter mitigation in milling—part 1: modeling and control design. Control Eng Pract 24:156–166CrossRefGoogle Scholar
  22. 22.
    Huang T, Chen Z, Zhang HT, Ding H (2015) Active control of an active magnetic bearings supported spindle for chatter suppression in milling process. J Dyn Syst Meas Control 137(11):111003CrossRefGoogle Scholar
  23. 23.
    Wang C, Zhang X, Cao H, Chen X, Xiang J (2018) Milling stability prediction and adaptive chatter suppression considering helix angle and bending. Int J Adv Manuf Technol 95(9–12):3665–3677CrossRefGoogle Scholar
  24. 24.
    Sallese L, Innocenti G, Grossi N, Scippa A, Flores R, Basso M, Campatelli G (2017) Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy. Int J Adv Manuf Technol 89(9–12):2771–2787CrossRefGoogle Scholar
  25. 25.
    Weiland S, Willems JC (1989) Almost disturbance decoupling with internal stability. IEEE Trans Autom Control 34(3):277–286MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ozcetin HK, Saberi A, Sannuti P (1992) Design for H∞ almost disturbance decoupling problem with internal stability via state or measurement feedback—singular perturbation approach. Int J Control 55(4):901–944MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Scherer C (1992) H_∞-optimization without assumptions on finite or infinite zeros. SIAM J Control Optim 30(1):143–166MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chen BM, Lin Z, Hang CC (1998) Design for general Hinfinity almost disturbance decoupling problem with measurement feedback and internal stability an eigenstructure assignment approach. Int J Control 71(4):653–685CrossRefzbMATHGoogle Scholar
  29. 29.
    Lin Z, Chen BM (2000) Solutions to general H∞ almost disturbance decoupling problem with measurement feedback and internal stability for discrete-time systems. Automatica 36(8):1103–1122MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wan M, Zhang WH, Dang JW, Yang Y (2010) A unified stability prediction method for milling process with multiple delays. Int J Mach Tool Manu 50(1):29–41CrossRefGoogle Scholar
  31. 31.
    Wan M, Wang YT, Zhang WH, Yang Y, Dang JW (2011) Prediction of chatter stability for multiple-delay milling system under different cutting force models. Int J Mach Tool Manu 51(4):281–295CrossRefGoogle Scholar
  32. 32.
    Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802CrossRefGoogle Scholar
  33. 33.
    Sannuti P, Saberi, A. (1986) A special coordinate basis of multivariable linear systems-finite and infinite zero structure. In Decision and control, 1986 25th IEEE Conference on (Vol. 25, pp. 2181–2186). IEEEGoogle Scholar
  34. 34.
    Saberi, Sannuti P (1990) Squaring down of non-strictly proper systems. Int J Control 51(3):621–629CrossRefzbMATHGoogle Scholar
  35. 35.
    Chen BM (1998) On properties of the special coordinate basis of linear systems. Int J Control 71(6):981–1003MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Fei Shi
    • 1
  • Hongrui Cao
    • 1
    Email author
  • Xingwu Zhang
    • 1
  • Xuefeng Chen
    • 1
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations