Fatigue life enhancement of TIG-welded 304L stainless steels by shot peening

  • S. BenchouiaEmail author
  • N. Merakeb
  • S. Adjel
  • S. Ehlers
  • M. Baccouche
  • A. Kaddour


Shot peening is a cold working process that leads to changes of residual stress in the surface layer and the microstructure. In this paper, we studied the effect of the stress ratio and shot peening on the fatigue life of AISI 304L austenitic stainless steel welded using a fully manual gas tungsten arc welding process (GTAW). The specimens are prepared by welding flat plates with thickness of 1 mm using GTAW process and the 308 stainless steel as the filler metal. Results indicate that the fatigue life of the as-welded material under tension–compression loading (stress ratio R = − 1) is longer compared to fatigue life under tension–tension loading (stress ratio R = 0). Furthermore, the microhardness and fatigue life are found to be improved after shot peening post-welding treatment for durations ranging from 5 to 7 min. The improvement in tensile stress and microhardness of treated material is as good as the results reported using the more advanced and costly techniques. Also, the findings suggest that influence of duration of shot peening is more significant on the fatigue life than on the microhardness.


Stainless steel 304L Fatigue life TIG Microhardness Shot peening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



S. Benchouia is grateful to the “Entreprise TRacteurs AGricoles (ETRAG)”, Constantine, for providing help in the shot peening treatment.

Funding information

S. Benchouia and S. Adjel were financially supported by the University of Annaba to accomplish this work through a scholarship to TUHH, Hamburg.


  1. 1.
    Mirshekari GR, Tavakoli E, Atapour M, Sadeghian B (2014) Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel. Mater Des 55:905–911CrossRefGoogle Scholar
  2. 2.
    Qu S, Huang CX, Gao YL, Yang G, Wu SD, Zang QS, Zhang ZF (2008) Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing. Mater Sci Eng A 475(1–2):207–216CrossRefGoogle Scholar
  3. 3.
    Shirdel M, Mirzadeh H, Habibi Parsa M (2014) Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metall Mater Trans A 45(11):5185–5193CrossRefGoogle Scholar
  4. 4.
    Özyürek D (2008) An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel. Mater Des 29(3):597–603CrossRefGoogle Scholar
  5. 5.
    Lee W-S, Lin C-F (2001) Impact properties and microstructure evolution of 304L stainless steel. Mater Sci Eng A 308(1–2):124–135CrossRefGoogle Scholar
  6. 6.
    Yan J, Gao M, Zeng X (2010) Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Opt Lasers Eng 48(4):512–517CrossRefGoogle Scholar
  7. 7.
    Sule J, Ganguly S, Suder W, Pirling T (2016) Effect of high-pressure rolling followed by laser processing on mechanical properties, microstructure and residual stress distribution in multi-pass welds of 304L stainless steel. Int J Adv Manuf Technol 86(5–8):2127–2138CrossRefGoogle Scholar
  8. 8.
    Unnikrishnan R, Idury KSNS, Ismail TP, Bhadauria A, Shekhawat SK, Khatirkar RK, Sapate SG (2014) Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater Charact 93:10–23CrossRefGoogle Scholar
  9. 9.
    Leggatt RH (2008) Residual stresses in welded structures. Int J Press Vessel Pip 85(3):144–151CrossRefGoogle Scholar
  10. 10.
    Yazdi SR, Retraint D, Lu J (2000) Experimental study of residual stress distributions in quenched parts by the incremental large hole drilling method and by the neutron diffraction method. J Test Eval 28(4):282–289CrossRefGoogle Scholar
  11. 11.
    Yanagida N, Koide H (2006) Residual stress improvement in multi-layer welded plates using water-shower cooling during welding process. Nippon Kikai Gakkai Ronbunshu Hen 72(723):1631–1638Google Scholar
  12. 12.
    Singh PJ, Mannan SL, Jayakumar T, Achar DRG (2005) Fatigue life extension of notches in AISI 304L weldments using deep cryogenic treatment. Eng Fail Anal 12(2):263–271CrossRefGoogle Scholar
  13. 13.
    Wang H, Jing H, Zhao L, Han Y, Lv X, Xu L (2017) Uniaxial ratcheting behaviour of 304L stainless steel and ER308L weld joints. Mater Sci Eng A 708:21–42CrossRefGoogle Scholar
  14. 14.
    Teng T-L, Chang P-H, Tseng W-C (2003) Effect of welding sequences on residual stresses. Comput Struct 81(5):273–286CrossRefGoogle Scholar
  15. 15.
    Akbari Mousavi SAA, Miresmaeili R (2008) Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel. J Mater Process Technol 208(1–3):383–394CrossRefGoogle Scholar
  16. 16.
    Lin C-M, Tsai H-L, Cheng C-D, Yang C (2012) Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel. Eng Fail Anal 21:9–20CrossRefGoogle Scholar
  17. 17.
    Jiang W, Luo Y, Zhang G, Woo W, Tu ST (2013) Experimental to study the effect of multiple weld-repairs on microstructure, hardness and residual stress for a stainless steel clad plate. Mater Des 51:1052–1059CrossRefGoogle Scholar
  18. 18.
    Kumar S, Shahi AS (Jun. 2011) Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater Des 32(6):3617–3623CrossRefGoogle Scholar
  19. 19.
    Batool S et al (2016) Analysis of weld characteristics of micro-plasma arc welding and tungsten inert gas welding of thin stainless steel (304L) sheet. Proc Inst Mech Eng Part J Mater Des Appl 230(6):1005–1017Google Scholar
  20. 20.
    Kah P (2012) Overview of the exploration status of laser-arc hybrid welding processes. Rev Adv Mater Sci 30(2):112–132MathSciNetGoogle Scholar
  21. 21.
    Lamas J, Karlsson J, Norman P, Powell J, Kaplan AFH, Yañez A (2013) The effect of fit-up geometry on melt flow and weld quality in laser hybrid welding. J Laser Appl 25(3):032010CrossRefGoogle Scholar
  22. 22.
    Taban E (2008) Joining of duplex stainless steel by plasma arc, TIG, and plasma arc+TIG welding processes. Mater Manuf Process 23(8):871–878CrossRefGoogle Scholar
  23. 23.
    Singh L, Khan RA, Aggarwal ML (2011) Influence of residual stress on fatigue design of AISI 304 stainless steel. J Eng Res TJER 8(1):44–52Google Scholar
  24. 24.
    D. Kirk, Residual stresses and retained austenite in shot-peened steels, in First International Conference on Shot Peening, 1981, pp. 271–277Google Scholar
  25. 25.
    Selvabharathi R, Muralikannan R (2018) Influence of shot peening and plasma ion nitriding on tensile strength of 2205 duplex stainless steel using A-PAW. Mater Sci Eng A 709:232–240CrossRefGoogle Scholar
  26. 26.
    Kirk D, Payne NJ (1999) Transformations induced in austenitic stainless steels by shot peening. Proc ICSP 7:15–22Google Scholar
  27. 27.
    Zhiming L, Laimin S, Shenjin Z, Zhidong T, Yazhou J (2015) Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater Sci Eng A 637:170–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • S. Benchouia
    • 1
    Email author
  • N. Merakeb
    • 1
  • S. Adjel
    • 1
  • S. Ehlers
    • 2
  • M. Baccouche
    • 1
  • A. Kaddour
    • 1
  1. 1.Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering DepartmentBadji Mokhtar UniversityAnnabaAlgeria
  2. 2.Institute for Ship Structural Design and AnalysisHamburg University of Technology (TUHH)HamburgGermany

Personalised recommendations