Advertisement

An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architecture

  • Gianluca BuffaEmail author
  • Giuseppe Ingarao
  • Davide Campanella
  • Rosa Di Lorenzo
  • Fabrizio Micari
  • Livan Fratini
ORIGINAL ARTICLE
  • 30 Downloads

Abstract

The manufacturing sector accounts for a high share of global electrical energy consumption and CO2 emissions, and therefore, the environmental impact of production processes is being more and more investigated. An analysis of power and energy consumption in friction stir welding processes can contribute to the characterization of the process from a new point of view and also provide useful information about the environmental impact of the process. An in-depth analysis of electrical energy demand of friction stir welding is here proposed. Different machine tool architectures, including an industrial dedicated machine, have been used to weld aluminum and steel sheets under different process conditions. The influence of tool rotation and feed rate was investigated. A power study, with breakdown analysis, was carried out to identify the contribution of the main sub-units and to determine the total demand. Different setups have been analyzed in order to identify the conditions resulting in the highest energy and mechanical efficiency. Potential control strategies for energy consumption reduction of FSW process are proposed.

Keywords

Friction stir welding Energy efficiency Power study Sustainable manufacturing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International European agency (IEA) 2015 Key Trends and CO2 Emissions Excerpt from: CO2 Emissions from Fossil Fuels. Available at: http://www.iea.org. Accessed 15 July 2018
  2. 2.
    United Nations Environment Programme 2011 Towards a Green Economy, Chapter 7, Manufacturing:in Investing in Energy and Resource EfficiencyGoogle Scholar
  3. 3.
    Gutowski TG, Allwood JM, Herrmann C, Sahni S (2013) A global assessment of manufacturing: economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling. Annu Rev Environ Resour 38:81–106CrossRefGoogle Scholar
  4. 4.
    Kibira D, Brundage MP, Feng S, Morris KC (2018) Procedure for selecting key performance indicators for sustainable manufacturing. J Manuf Sci Eng Trans ASME 140:011005.  https://doi.org/10.1115/1.4037439 CrossRefGoogle Scholar
  5. 5.
    Duflou JR, Kellens K, Renaldi et al (2012) Critical comparison of methods to determine the energy input for discrete manufacturing processes. CIRP Ann - Manuf Technol 61:63–66.  https://doi.org/10.1016/j.cirp.2012.03.025 CrossRefGoogle Scholar
  6. 6.
    Ingarao G, Deng Y, Marino R, di Lorenzo R, Lo Franco A (2016) Energy and CO2life cycle inventory issues for aluminum based components: the case study of a high speed train window panel. J Clean Prod 126:493–503.  https://doi.org/10.1016/j.jclepro.2016.03.070 CrossRefGoogle Scholar
  7. 7.
    Haapala KR, Zhao F, Camelio J, Sutherland JW, Skerlos SJ, Dornfeld DA, Jawahir IS, Clarens AF, Rickli JL (2013) A review of engineering research in sustainable manufacturing. J Manuf Sci Eng Trans ASME 135:041013.  https://doi.org/10.1115/1.4024040 CrossRefGoogle Scholar
  8. 8.
    Ingarao G (2017) Manufacturing strategies for efficiency in energy and resources use: the role of metal shaping processes. J Clean Prod 142:2872–2886CrossRefGoogle Scholar
  9. 9.
    Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann - Manuf Technol 60:37–40.  https://doi.org/10.1016/j.cirp.2011.03.018 CrossRefGoogle Scholar
  10. 10.
    Li L, Yan J, Xing Z (2013) Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. J Clean Prod 52:113–121.  https://doi.org/10.1016/j.jclepro.2013.02.039 CrossRefGoogle Scholar
  11. 11.
    Liu ZY, Guo YB, Sealy MP, Liu ZQ (2016) Energy consumption and process sustainability of hard milling with tool wear progression. J Mater Process Technol 229:305–312.  https://doi.org/10.1016/j.jmatprotec.2015.09.032 CrossRefGoogle Scholar
  12. 12.
    Priarone PC (2016) Quality-conscious optimization of energy consumption in a grinding process applying sustainability indicators. Int J Adv Manuf Technol 86:2107–2117.  https://doi.org/10.1007/s00170-015-8310-9 CrossRefGoogle Scholar
  13. 13.
    Buis JJ, Sutherland JW, Zhao F (2013) Unit process life cycle inventory models of hot forming processes. In: ASME 2013 international manufacturing science and engineering conference collocated with the 41st north American manufacturing research conference, MSEC 2013Google Scholar
  14. 14.
    Gao M, Huang H, Li X, Liu Z (2017) Carbon emission analysis and reduction for stamping process chain. Int J Adv Manuf Technol 91:667–678.  https://doi.org/10.1007/s00170-016-9732-8 CrossRefGoogle Scholar
  15. 15.
    Gao M, Huang H, Wang Q, Liu Z, Li X (2018) Energy consumption analysis on sheet metal forming: focusing on the deep drawing processes. Int J Adv Manuf Technol 96:3893–3907.  https://doi.org/10.1007/s00170-018-1735-1 CrossRefGoogle Scholar
  16. 16.
    Le Bourhis F, Kerbrat O, Hascoet J-Y, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69:1927–1939.  https://doi.org/10.1007/s00170-013-5151-2 CrossRefGoogle Scholar
  17. 17.
    Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587.  https://doi.org/10.1016/j.jclepro.2016.04.150 CrossRefGoogle Scholar
  18. 18.
    Kellens K, Baumers M, Gutowski TG, Flanagan W, Lifset R, Duflou JR (2017) Environmental dimensions of additive manufacturing: mapping application domains and their environmental implications. J Ind Ecol 21:S49–S68.  https://doi.org/10.1111/jiec.12629 CrossRefGoogle Scholar
  19. 19.
    Cooper DR, Rossie KE, Gutowski TG (2017) The energy requirements and environmental impacts of sheet metal forming: an analysis of five forming processes. J Mater Process Technol 244:116–135.  https://doi.org/10.1016/j.jmatprotec.2017.01.010 CrossRefGoogle Scholar
  20. 20.
    Ingarao G, Vanhove H, Kellens K, Duflou JR (2014) A comprehensive analysis of electric energy consumption of single point incremental forming processes. J Clean Prod 67:173–186.  https://doi.org/10.1016/j.jclepro.2013.12.022 CrossRefGoogle Scholar
  21. 21.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53.  https://doi.org/10.1016/j.jclepro.2015.06.121 CrossRefGoogle Scholar
  22. 22.
    Chang Y-J, Sproesser G, Neugebauer S, Wolf K, Scheumann R, Pittner A, Rethmeier M, Finkbeiner M (2015) Environmental and social life cycle assessment of welding technologies. Procedia CIRP 26:293–298.  https://doi.org/10.1016/j.procir.2014.07.084 CrossRefGoogle Scholar
  23. 23.
    Ahmed MMZ, Ataya S, El-Sayed Seleman MM et al (2017) Friction stir welding of similar and dissimilar AA7075 and AA5083. J Mater Process Technol 242:77–91.  https://doi.org/10.1016/j.jmatprotec.2016.11.024 CrossRefGoogle Scholar
  24. 24.
    Lohwasser D, Chen Z (2009) Friction Stir Welding: From Basics to ApplicationsGoogle Scholar
  25. 25.
    Orozco MS, Macías EJ, Roca AS, Fals HC, Fernández JB (2013) Optimisation of friction-stir welding process using vibro-acoustic signal analysis. Sci Technol Weld Join 18:532–540.  https://doi.org/10.1179/1362171813Y.0000000134 CrossRefGoogle Scholar
  26. 26.
    Ghosh M, Kumar K, Kailas SV, Ray AK (2010) Optimization of friction stir welding parameters for dissimilar aluminum alloys. Mater Des 31:3033–3037.  https://doi.org/10.1016/j.matdes.2010.01.028 CrossRefGoogle Scholar
  27. 27.
    Koilraj M, Sundareswaran V, Vijayan S, Koteswara Rao SR (2012) Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 – optimization of process parameters using Taguchi technique. Mater Des 42:1–7.  https://doi.org/10.1016/j.matdes.2012.02.016 CrossRefGoogle Scholar
  28. 28.
    Shrivastava A, Overcash M, Pfefferkorn FE (2015) Prediction of unit process life cycle inventory (UPLCI) energy consumption in a friction stir weld. J Manuf Process 18:46–54.  https://doi.org/10.1016/j.jmapro.2014.10.006 CrossRefGoogle Scholar
  29. 29.
    Shrivastava A, Krones M, Pfefferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168.  https://doi.org/10.1016/j.cirpj.2014.10.001 CrossRefGoogle Scholar
  30. 30.
    Buffa G, Campanella D, Di Lorenzo R, et al (2017) Analysis of electrical energy demands in friction stir welding of aluminum alloys. In: Procedia EngineeringGoogle Scholar
  31. 31.
    Kellens K, Dewulf W, Overcash M, Hauschild MZ, Duflou JR (2012) Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) CO2PE! Initiative (cooperative effort on process emissions in manufacturing). Part 2: case studies. Int J Life Cycle Assess 17:242–251.  https://doi.org/10.1007/s11367-011-0352-0 CrossRefGoogle Scholar
  32. 32.
    Rai R, De A, Bhadeshia HKDH, DebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16:325–342.  https://doi.org/10.1179/1362171811Y.0000000023 CrossRefGoogle Scholar
  33. 33.
    Li W, Kara S (2011) An empirical model for predicting energy consumption of manufacturing processes: a case of turning process. Proc Inst Mech Eng Part B-Journal Eng Manuf 225:1636–1646.  https://doi.org/10.1177/2041297511398541 CrossRefGoogle Scholar
  34. 34.
    Cuellar KJQ, Silveira JLL (2017) Analysis of torque in friction stir welding of aluminum alloy 5052 by inverse problem method. J Manuf Sci Eng Trans ASME 139:041017.  https://doi.org/10.1115/1.4035719 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Gianluca Buffa
    • 1
    Email author
  • Giuseppe Ingarao
    • 1
  • Davide Campanella
    • 1
  • Rosa Di Lorenzo
    • 1
  • Fabrizio Micari
    • 1
  • Livan Fratini
    • 1
  1. 1.Department of Industrial and Digital InnovationUniversity of PalermoPalermoItaly

Personalised recommendations