Advertisement

A method for generating multiple solutions for multipoint five-axis tool positioning

  • Sandeep Kumar SharmaEmail author
  • Ravinder Kumar Duvedi
  • Sanjeev Bedi
  • Stephen Mann
ORIGINAL ARTICLE
  • 24 Downloads

Abstract

Multipoint machining (MPM) strategies are a class of methods that use the flexibility of a five-axis machine to position a tool in close proximity of the desired surface so that the tool touches the surface on at least two points of contact. However, existing multipoint methods cannot control the spacing between the two points of contact. This paper presents a new technique, called the Drop, Spin, and Tilt (DST) method that can generate multiple contact points at varying distances around the first point of contact. The multiple DST second points of contact were used to manually generate a toolpath with uniform spacing between the two points of contact. While a uniform space could be attained at most tool positions, problem cases were encountered demonstrating that more work is required for an algorithmic version of this process. The proposed method was implemented in a symbolic algebra system and verified on a variety of surfaces.

Keywords

CNC machining Five-axis machining Multipoint machining Bézier surface DTM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Bedi S, Gravelle S, Chen Y (1997) Principle curvature alignment technique for machining complex surfaces. J Manuf Sci Eng 119(4B):756–765CrossRefGoogle Scholar
  2. 2.
    Warkentin A, Ismail F, Bedi S (2000) Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Comput Aided Geom Des 17(1):83–100MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Warkentin A, Ismail F, Bedi S (2000) Comparison between multipoint and other 5-axis tool positioning strategies. Int J Mach Tools Manuf 40(2):185–208CrossRefGoogle Scholar
  4. 4.
    Gray P, Bedi S, Ismail F (2005) Arc-intersect method for 5-axis tool positioning. Comput-Aided Des Elsevier 37:663–674CrossRefGoogle Scholar
  5. 5.
    Duvedi RK, Bedi S, Batish A, Mann S (2014) A multipoint method for 5-axis machining of triangulated surface models. Comput Aided Des 52:17–26CrossRefGoogle Scholar
  6. 6.
    Duvedi RK, Bedi S, Mann S (2017) Numerical implementation of drop and tilt method of 5-axis tool positioning for tensor product surfaces, international journal of advanced manufacturing technology. Springer, London, pp 1–14.  https://doi.org/10.1007/s00170-017-1193-1 Google Scholar
  7. 7.
    Sharma SK, Duvedi RK, Bedi S, Mann S (2018) A multipoint tool positioning method for five-axis machining in the region of two intersecting tensor product Bézier surfaces. Journal of Machine Tool and Manufacture, submitted July 2018Google Scholar
  8. 8.
    Roth D, Ismail F, Bedi S (2005) Mechanistic modelling of the milling process using complex tool geometry. Int J Adv Manuf Technol 25:140–144CrossRefGoogle Scholar
  9. 9.
    Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput Aided Des 42:641–654CrossRefGoogle Scholar
  10. 10.
    Makhanov S (2010) Adaptable geometric patterns for five-axis machining: a survey international. J Adv Manuf Technol 47: 1167–1208CrossRefGoogle Scholar
  11. 11.
    Fard MJB, Feng HY (2009) Effect of tool tilt angle on machining strip width in five-axis flat-end milling of free-form surfaces. Int J Adv Manuf Technol 44:211–222CrossRefGoogle Scholar
  12. 12.
    He Y, Chen Z (2014) Optimising tool positioning for achieving multi-point contact based on symmetrical error distribution curve in sculptured surface machining. Int J Adv Manuf Technol 73(4): 707–714CrossRefGoogle Scholar
  13. 13.
    Chen Z, Li S, Gan Z, Zhu Y (2017) A highly efficient and convergent optimization method for multipoint tool orientation in five-axis machining. International journal of advanced manufacturing technology, vol 93. Springer, London, pp 2711–2722Google Scholar
  14. 14.
    Wu B, Liang M, Zhang Y, Luo M, Tang K (2017) Optimization of machining strip width using effective cutting shape of flat-end cutter for five-axis free-form surface machining. Int J Adv Manuf Technol 94:2623–2633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Sandeep Kumar Sharma
    • 1
    Email author
  • Ravinder Kumar Duvedi
    • 1
  • Sanjeev Bedi
    • 2
  • Stephen Mann
    • 2
  1. 1.Thapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations