Structure and mechanical properties of 3D-printed cellulose tablets by fused deposition modeling

  • Rodrigo Acácio Paggi
  • Gean Vitor SalmoriaEmail author
  • Gabriel Bussolo Ghizoni
  • Henrique de Medeiros Back
  • Izabelle de Mello Gindri


This paper evaluated corn starch/cellulose acetate (SCA) specimens 3D-printed by the fused deposition modeling (FDM) method. The influence of the printing parameters, nozzle temperature, and flow rate on the morphological and mechanical properties of the specimens was evaluated. Scanning electron microscopy (SEM) showed smooth surfaces on all the 3D-printed specimens. The fracture surface analysis revealed homogeneity and low porosity of the specimens printed at 230 °C and 90% flow rate. The flexural tests showed high values of the flexural modulus for the specimens printed at 240 °C and 80% flow rate, and the fatigue tests demonstrated that the 230-90 SCA specimens were resistant to successive cyclic loads.


Corn starch/cellulose acetate 3D printing Structure and mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank PRONEX-FAPESC, CAPES, and CNPq for the financial support and CERMAT for the electronic micrographics.


  1. 1.
    Alhnan MA, Okwuosa TC, Sadia M, Ka-WaiWan, Ahmed W, Arafat B (2016) Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res 33:1817–1832CrossRefGoogle Scholar
  2. 2.
    Avanzini A, Donzella G, Gallina D, Pandini S, Petrogalli C (2013) Fatigue behavior and cyclic damage of peek short fiber reinforced composites. Compos Part B 45:397–406CrossRefGoogle Scholar
  3. 3.
    Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111CrossRefGoogle Scholar
  4. 4.
    Bumgarner B (2013) Getting started with a 3D printer. Make. Pages 12–16Google Scholar
  5. 5.
    Bastioli C (1998) Properties and applications of Mater-Bi® starch-based materials. Polym Degrad Stab 59:263–271CrossRefGoogle Scholar
  6. 6.
    Corradini E, Teixeira EM, Agnelli JAM, Matoso LHC Aimdo Termoplástico. São Carlos: Embrapa Instrumentação Agropecuária, 2007Google Scholar
  7. 7.
    Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW (2017) Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm 527(1–2):21–30CrossRefGoogle Scholar
  8. 8.
    Goole J, Amighi K (2016) 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm 499(1–2):376–394CrossRefGoogle Scholar
  9. 9.
    Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA (2013) Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion. Polym Test 32(6):1123–1127CrossRefGoogle Scholar
  10. 10.
    Khaled SA, Burley JC, Alexander MR, Roberts CJ (2014) Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 461(1–2):105–111CrossRefGoogle Scholar
  11. 11.
    Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494(2):643–650CrossRefGoogle Scholar
  12. 12.
    Lee JY, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRefGoogle Scholar
  13. 13.
    Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155CrossRefGoogle Scholar
  14. 14.
    Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A (2017) 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release 268:10–18CrossRefGoogle Scholar
  15. 15.
    Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L (2016) Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 509(1–2):255–263CrossRefGoogle Scholar
  16. 16.
    Park JS, Kim T, Kim WS (2017) Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci Rep 7(3246)Google Scholar
  17. 17.
    Pattinson SW, Hart AJ (2017) Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Adv Mater Technol 1-6Google Scholar
  18. 18.
    Pereira AS, Cunha AM, Reis RL (1998) Newstarch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J Mater Sci Med 9:825–833CrossRefGoogle Scholar
  19. 19.
    Salmoria GV, Klauss P, Paggi RA, Kanis LAAL (2009) Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym Test 28(6):648–652CrossRefGoogle Scholar
  20. 20.
    Solanki NG, Tahsin M, Shah AV, Serajuddin ATM (2018) Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release. Drug-polymer miscibility and printability. J Pharm Sci 107(1):390–401CrossRefGoogle Scholar
  21. 21.
    Yang Y, Wang H, Li H, Ou Z, Yang G (2018) 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci 115:11–18CrossRefGoogle Scholar
  22. 22.
    Yao Z, Wu D, Chen C, Zhang M (2013) Creep behavior of polyurethane nanocomposites with carbon nanotubes. Compos Part A 50:65–72CrossRefGoogle Scholar
  23. 23.
    Zepon KM, Petronilho F, Soldi V, Salmoria GV, Kanis LA (2014) Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices. Mater Sci Eng C 44:225–233CrossRefGoogle Scholar
  24. 24.
    Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2017) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519(1–2):186–197CrossRefGoogle Scholar
  25. 25.
    Pietrzak K, Isreb A, AA Mohamed (2015) European journal of pharmaceutics and biopharmaceutics 96:380–387.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Rodrigo Acácio Paggi
    • 1
    • 2
  • Gean Vitor Salmoria
    • 1
    • 3
    Email author
  • Gabriel Bussolo Ghizoni
    • 1
  • Henrique de Medeiros Back
    • 1
  • Izabelle de Mello Gindri
    • 3
  1. 1.NIMMA, Departamento de Engenharia MecânicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Departamento de Ensino, Pesquisa e ExtensãoInstituto Federal de Santa CatarinaCaçadorBrazil
  3. 3.Laboratório de Engenharia BiomecânicaHospital Universitário, Universidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations