Advertisement

Investigation on parametric effects on groove profile generated on Ti1023 titanium alloy by jet electrochemical machining

  • Weidong Liu
  • Zhen LuoEmail author
  • Yang Li
  • Zuming Liu
  • Kangbai Li
  • Jianxiang Xu
  • Sansan AoEmail author
ORIGINAL ARTICLE
  • 45 Downloads

Abstract

Ti1023 titanium alloy is widely used in various industries due to the excellent synthetic performance, but its machining processes are still being developed. Jet electrochemical machining, combining the advantages of electrochemical machining and numerical control technique, becomes a promising machining method for Ti1023 titanium alloy. Aiming to explore the feasibility for jet electrochemical machining of surface structure on Ti1023 titanium alloy, this work systematically studied the mechanism and parametric effects in a jet electrochemical machining process via simulation and experiments. Anodic polarization of Ti1023 titanium alloy in NaCl electrolyte reveals that the oxide layer removal potential reaches 4.7 V vs. SCE, and a long time application of high voltage is required to remove the oxide layer and achieve the desired dissolution state. A novel three-dimensional model accounting for this polarization behavior was developed to predict the machining performance. Through simulation and experiments, the process conditions were optimized as 24 V of applied voltage, 0.6 mm of inter-electrode gap, 2.1 L min−1 of electrolyte flow rate, and 25 μm s−1 of nozzle traveling rate. Using the selected parameters, a surface structure with an “S” shape can be efficiently machined on Ti1023 titanium alloy by jet electrochemical machining with controlled multi-dimensional nozzle motion.

Keywords

Jet electrochemical machining Ti1023 titanium alloy Groove profile Parametric effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Additionally, Weidong Liu especially wishes to thank Xin Zhang for the patience, care, and support over the past years.

Funding information

This work was supported by National Key R&D Program of China (No.2018YFB1107900), the National Natural Science Foundation of China (No. 51575383), and Natural Science Foundation of Tianjin City (No. 18JCQNJC04100).

References

  1. 1.
    Wilson JF (1971) Practice and theory of electrochemical machining, 2nd edn. John Wiley & Sons Inc, New YorkGoogle Scholar
  2. 2.
    Bannard J (1977) Electrochemical machining. J Appl Electrochem 7:1–29CrossRefGoogle Scholar
  3. 3.
    Rajurkar KP, Zhu D, McGeough JA, Kozak J, DeSilva AKM (1999) New developments in electro-chemical machining. CIRP Ann 48:568–579Google Scholar
  4. 4.
    Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP 6:13–26CrossRefGoogle Scholar
  5. 5.
    Sarkar S, Mitra S, Bhattacharyya B (2004) Mathematical modeling for controlled electrochemical deburring (ECD). J Mater Process Technol 147:2241–2246CrossRefGoogle Scholar
  6. 6.
    Spieser A, Ivanov A (2015) Design of an electrochemical micromachining machine. Int J Adv Manuf Technol 78:737–752CrossRefGoogle Scholar
  7. 7.
    Hinduja S, Pattavanitch J (2016) Experimental and numerical investigations in electro-chemical milling. CIRP J Manuf Sci Technol 12:79–89CrossRefGoogle Scholar
  8. 8.
    Datta M, Romankiw LT, Vigliotti DR, Gutfeld von RJ (1989) Jet and laser-jet electrochemical micromachining of nickel and steel. J Electrochem Soc 136:2251–2256CrossRefGoogle Scholar
  9. 9.
    Kunieda M, Yoshida M, Yoshida H, Akamatsu Y (1993) Influence of micro indents formed by electro-chemical jet machining on rolling bearing fatigue life. ASME PED 64:693–699Google Scholar
  10. 10.
    Kozak J, Rajurkar KP, Balkrishna R (1996) Study of electrochemical jet machining process. J Manuf Sci Eng 118:490–498CrossRefGoogle Scholar
  11. 11.
    Yoneda K, Kunieda M (1996) Numerical analysis of cross section shape of micro-indents formed by the electrochemical jet machining. J Jpn Soc Electr Mach Eng 29:1–8 (in Japanese)Google Scholar
  12. 12.
    Natsu W, Ikeda T, Kunieda M (2007) Generating complicated surface with electrolyte jet machining. Precis Eng 31:33–39CrossRefGoogle Scholar
  13. 13.
    Natsu W, Ooshiro S, Kunieda M (2008) Research on generation of three dimensional surface with micro-electrolyte jet machining. CIRP J Manuf Sci Technol 1:27–34CrossRefGoogle Scholar
  14. 14.
    Kai S, Sai H, Kunieda M, Izumi H (2012) Study on electrolyte jet cutting. Procedia CIRP 1:627–632CrossRefGoogle Scholar
  15. 15.
    Hackert-Oschatzchen M, Meichsner G, Zinecker M, Martin A, Schubert A (2012) Micro machining with continuous electrolytic free jet. Precis Eng 36:612–619CrossRefGoogle Scholar
  16. 16.
    Kawanaka T, Kato S, Kunieda M, Murray JW, Clare AT (2014) Selective surface texturing using electrolyte jet machining. Procedia CIRP 13:345–349CrossRefGoogle Scholar
  17. 17.
    Kawanaka T, Kunieda M (2015) Mirror-like finishing by electrolyte jet machining. CIRP Manuf Technol 64:237–240CrossRefGoogle Scholar
  18. 18.
    Hackert-Oschatzchen M, Pual R, Kowalick M, Martin A, Meichsner G, Schubert A (2015) Multiphysics simulation of the material removal in jet electrochemical machining. Procedia CIRP 31:197–202CrossRefGoogle Scholar
  19. 19.
    Hackert-Oschatzchen M, Pual R, Martin A, Meichsner G, Lehnert N, Schubert A (2015) Study on the dynamic generation of the jet shape in jet electrochemical machining. J Mater Process Technol 223:240–251CrossRefGoogle Scholar
  20. 20.
    Walker JC, Kamps TJ, Lam JW, Mitchell-Smith J, Clare AT (2017) Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material. Wear 376-377:1611–1621CrossRefGoogle Scholar
  21. 21.
    Speidel A, Mitchell-Smith J, Walsh DA, Hirsch M, Clare AT (2016) Electrolyte jet machining of titanium alloy using novel electrolyte solutions. Procedia CIRP 42:367–372CrossRefGoogle Scholar
  22. 22.
    Mitchell-Smith J, Clare AT (2016) Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance. Procedia CIRP 42:379–383CrossRefGoogle Scholar
  23. 23.
    Yuan Y, Han LH, Huang D, Su JJ, Tian ZQ, Tian ZW, Zhan DP (2015) Electrochemical micromachining under mechanical motion mode. Electrochim Acta 183:3–7CrossRefGoogle Scholar
  24. 24.
    Kozak J, Osman HM, Dabrowski L (1988) Theoretical and experimental investigation for profile electrolytic machining with rotating electrode. In: Proceeding of the 27th MTDR, p 281–286Google Scholar
  25. 25.
    Schubert A, Hackert-Oschätzchen M, Martin A, Winkler S, Kuhn D, Meichsner G, Zeidler H, Edelmann J (2016) Generation of complex surfaces by superimposed multi-dimensional motion in electrochemical machining. Procedia CIRP 42:384–389CrossRefGoogle Scholar
  26. 26.
    Klocke F, Zeis M, Klink A, Veselovac D (2012) Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium- and nickel-based Blisks. Procedia CIRP 2:98–101CrossRefGoogle Scholar
  27. 27.
    Lohrengel MM, Rataj KP, Munninghoff T (2016) Electrochemical machining mechanisms of anodic dissolution. Electrochim Acta 201:348–453CrossRefGoogle Scholar
  28. 28.
    Hinduja S, Kunieda M (2013) Modelling of ECM and EDM processes. CIRP Annals Manuf Technol 62:775–797CrossRefGoogle Scholar
  29. 29.
    Wang DY, Zhu ZW, He B, Ge YC, Zhu D (2017) Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution. J Mater Process Technol 239:251–257CrossRefGoogle Scholar
  30. 30.
    Weinmann M, Stolpe M, Weber O, Busch R, Natter H (2015) Electrochemical dissolution behavior of Ti90Al6V4 and Ti60Al40 used for ECM applications. J Solid State Electrochem 19:485–495CrossRefGoogle Scholar
  31. 31.
    Gonzalez JEG, Mirza-Rosca JC (1999) Study of the corrosion of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem 471:109–115CrossRefGoogle Scholar
  32. 32.
    Jiang ZL, Dai X, Norby T, Middleton H (2011) Investigation of titanium based on a modified point defect model. Corros Sci 53:815–821CrossRefGoogle Scholar
  33. 33.
    Sazou D, Saltidou K, Pagitsas M (2012) Understanding of the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochim Acta 76:48–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin University-Peiyang Park CampusTianjinChina
  2. 2.Collaborative Innovation Center of Advanced Ship and Deep-Sea ExplorationShanghaiChina
  3. 3.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations