Advertisement

Optimization of friction stir spot welding process parameters for Al-Cu dissimilar joints using the energy of the vibration signals

  • Alberto Nacer Colmenero
  • Mario Sánchez OrozcoEmail author
  • Emilio Jiménez Macías
  • Julio Blanco Fernández
  • Juan Carlos Sáenz-Diez Muro
  • Hipólito Carvajal Fals
  • Angel Sánchez Roca
ORIGINAL ARTICLE
  • 54 Downloads

Abstract

A friction stir spot welding (FSSW) process for dissimilar aluminum alloy AA1050 and pure copper sheets of 3-mm thickness at different tool rotation speeds between 710 and 1800 rpm and dwell time levels of 0, 5, and 10 s were performed in this study. Empirical relationships were developed to predict the shear failure load (joint strength) and the energy of the vibration signals incorporating two of the most important process parameters, tool rotation speed and dwell time. Process parameters were optimized by using the response surface method (RSM); the optimal values of tool rotation speed and dwell time were 1255 rpm and 4 s, respectively. The parameters optimization results were used in a confirmation test; the dissimilar Al/Cu FSSW joints made with optimal parameters exhibit a good shear failure load. The close relationship between the shear failure load (SFL) of the welded joint and the energy of the vibration signals (EVS) generated during FSSW process was demonstrated. This model can be used to develop and optimize the parameters for automatic control of the FSSW process, based on the vibration signal generated.

Keywords

friction stir spot welding dissimilar Cu/Al joints parameters optimization energy of vibration signal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This paper has been partially supported by the project of the Spanish Government, DPI2011-25007: “Friction Stir Welding of Dissimilar Materials. Characterization by Acoustic Emission Techniques and Artificial Intelligence.”

References

  1. 1.
    Mehta KP, Badheka VJA (2016) Review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater Manuf Process 31:233–254CrossRefGoogle Scholar
  2. 2.
    Macías E, Roca A, Fals H, Muro J, Fernández J (2015) Characterisation of friction stir spot welding process based on envelope analysis of vibro-acoustical signals. Sci Technol Weld Join 20:172–180CrossRefGoogle Scholar
  3. 3.
    Bergmann JP, Petzoldt F, Schürer R, Schneider S (2013) Solid-state welding of aluminum to copper—case studies. Weld World 57:541–550CrossRefGoogle Scholar
  4. 4.
    Mubiayi MP, Akinlabi ET (2015) An Overview on Friction Stir Spot Welding of Dissimilar Materials. In: H.K. Kim et al. (eds.), Transactions on Engineering Technologies, Springer Netherlands, pp 537–49Google Scholar
  5. 5.
    Heideman R, Johnson C, Kou S (2010) Metallurgical analysis of Al/Cu friction stir spot welding. Sci Technol Weld Join 15:597–604CrossRefGoogle Scholar
  6. 6.
    Özdemir U, Sayer S, Yeni Ç (2012) Effect of pin penetration depth on the mechanical properties of friction stir spot welded aluminum and copper. Mater Test 54:233–239CrossRefGoogle Scholar
  7. 7.
    Shiraly M, Shamanian M, Toroghinejad M, Jazani MA (2014) Effect of tool rotation rate on microstructure and mechanical behavior of friction stir spot-welded Al/Cu composite. J Mater Eng Perform 23:413–420CrossRefGoogle Scholar
  8. 8.
    Manickam S, Balasubramanian V (2015) Maximizing strength of friction stir spot welded bimetallic joints of Aa6061 aluminum alloy and copper alloy by response surface methodology. Int J Mech Eng 3-12:15–26Google Scholar
  9. 9.
    Abbass MK, Hussein SK, Khudhair AA (2016) Optimization of mechanical properties of friction stir spot welded joints for dissimilar aluminum alloys (Aa2024-T3 and Aa 5754-H114). Arab J Sci Eng 1–10:4563–4572CrossRefGoogle Scholar
  10. 10.
    Effertz P, Quintino L, Infante V (2017) The optimization of process parameters for friction spot welded 7050-T76 aluminium alloy using a Taguchi orthogonal Array. Int J Adv Manuf Technol 91(9–12):3683–3695CrossRefGoogle Scholar
  11. 11.
    Babu KK, Panneerselvam K et al (2018) Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm. Int J Adv Manuf Technol 94(9–12):3117–3129CrossRefGoogle Scholar
  12. 12.
    Sundaram M, Visvalingam B (2016) Optimizing the friction stir spot welding parameters to attain maximum strength in Al/Mg dissimilar joints. J Weld Join 34(3):23–30CrossRefGoogle Scholar
  13. 13.
    Orozco MS, Macías EJ, Roca AS, Fals HC, Fernández JB (2013) Optimisation of friction-stir welding process using vibro-acoustic signal analysis. Sci Technol Weld Join 18:532–540CrossRefGoogle Scholar
  14. 14.
    Chen C, Kovacevic R, Jandgric D (2003) Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. Int J Mach Tools Manuf 43:1383–1390CrossRefGoogle Scholar
  15. 15.
    Fernández JB, Roca AS, Fals HC, Macías EJ, Parte MPDL (2012) Application of vibroacoustic signals to evaluate tools profile changes in friction stir welding on Aa 1050 H24 alloy. Sci Technol Weld Join 17:501–510CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Yang X, Zhang J, Zhou G, Xu X, Zou B (2011) Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater Des 32:4461–4470CrossRefGoogle Scholar
  17. 17.
    Bozzi S, Helbert-Etter A, Baudin T, Criqui B, Kerbiguet J (2010) Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater Sci Eng A 527:4505–4509CrossRefGoogle Scholar
  18. 18.
    Khan MI, Kuntz ML, Su P, Gerlich A, North T, Zhou Y (2007) Resistance and friction stir spot welding of DP600: a comparative study. Sci Technol Weld Join 12(2):175–182CrossRefGoogle Scholar
  19. 19.
    Rajakumar S, Muralidharan C, Balasubramanian V (2010) Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints. T Nonferr Metal Soc 20(10):1863–1872CrossRefGoogle Scholar
  20. 20.
    Benavides S, Li Y, Murr LE, Brown D, McClure JC (1999) Low-temperature friction-stir welding of 2024 aluminum. Scr Mater 41(8):809–815CrossRefGoogle Scholar
  21. 21.
    Dashatan SH, Azdast T, Ahmadi SR, Bagheri A (2013) Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater Des 45:135–141CrossRefGoogle Scholar
  22. 22.
    Yuan W, Mishra RS, Webb S, Chen Y, Carlson B, Herling D, Grant G (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mater Process Technol 211:972–977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Alberto Nacer Colmenero
    • 1
  • Mario Sánchez Orozco
    • 1
    Email author
  • Emilio Jiménez Macías
    • 2
  • Julio Blanco Fernández
    • 3
  • Juan Carlos Sáenz-Diez Muro
    • 2
  • Hipólito Carvajal Fals
    • 1
  • Angel Sánchez Roca
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversidad de OrienteSantiago de CubaCuba
  2. 2.Electrical Engineering DepartmentUniversidad de La RiojaLogroñoSpain
  3. 3.Mechanical Engineering DepartmentUniversidad La RiojaLogroñoSpain

Personalised recommendations