Advertisement

Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility

  • S. Pradeep NarayananEmail author
  • S. Raghavan
ORIGINAL ARTICLE

Abstract

In this paper, we discussed biocompatibility improvement and mechanical strength of the solid silicon (Si) microneedles for transdermal drug delivery systems. The pyramidal shape and sharp tip of microneedles are fabricated using an optimized Tetramethylammonium Hydroxide (TMAH) etching factors. The mechanical strength and biocompatibility of the microneedle array are enhanced after coating gold (Au) layer through metal sputtering technique. The needles thus fabricated are suitable for sustained transdermal drug delivery applications with a height of 250 μm and a base width of 52.8 μm, the aspect ratio of 4.73, and tip angle and diameter of 24.5° and 45 μm. The Vickers hardness value of 3800 Hv is obtained for the fabricated Au-coated solid Si microneedles. The attained Vickers hardness value is substantially higher than the skin resistive force. It shows that the capability of drug delivery by piercing these microneedles into the skin becomes readily feasible.

Keywords

Biocompatibility Hardness Metal sputtering Microneedles Transdermal drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the support provided by the Indian Nanoelectronics Users Programme (INUP)—IIT Bombay (IITB), India, to carry out this work and also to CEN (Centre of Excellence in Nano Technology), IITB, for their permission to use the available facilities.

References

  1. 1.
    Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587CrossRefGoogle Scholar
  2. 2.
    Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 27:1261–1268CrossRefGoogle Scholar
  3. 3.
    Kaestli LZ, Wasilewski-Rasca AF, Bonnabry P, Vogt-Ferrier N (2008) Use of transdermal drug formulations in the elderly. Drugs Aging 25:269–280CrossRefGoogle Scholar
  4. 4.
    Sivamani RK, Liepmann D, Malbach HI (2007) Microneedles and transdermal applications. Expert Opin Drug Deliv 4:19–25CrossRefGoogle Scholar
  5. 5.
    Kalluri H, Banga AK (2011) Transdermal delivery of proteins. AAPS PharmSciTech 12:431–441CrossRefGoogle Scholar
  6. 6.
    Hadgraft J, Lane ME (2011) Skin: the ultimate interface. Phys Chem Chem Phys 13:5215–5222CrossRefGoogle Scholar
  7. 7.
    Xiang Z, Wang H, Pant A, Pastorin G, Lee C (2013) Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics 7(2):026502 (1–10)CrossRefGoogle Scholar
  8. 8.
    Pegoraro C, MacNeil S, Battaglia G (2012) Transdermal drug delivery: from micro to nano. Nanoscale 4:1881–1894CrossRefGoogle Scholar
  9. 9.
    Kim YC, Park JH, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64:1547–1568CrossRefGoogle Scholar
  10. 10.
    DeMuth PC, Min Y, Huang B, Kramer JA, Miller AD, Hammond PT, Irvine DJ (2013) Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater 12:367–376CrossRefGoogle Scholar
  11. 11.
    DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ (2010) Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 22:4851–4856CrossRefGoogle Scholar
  12. 12.
    Strambini LM, Longo A, Diligentia A, Barillaro G (2012) A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip 12:3370–3379CrossRefGoogle Scholar
  13. 13.
    Wei Z, Zheng S, Wang R, Bu X, Ma H, Wu Y, Zhu L, Hu Z, Liang Z, Li Z (2014) A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery. Lab Chip 14:4093–4102CrossRefGoogle Scholar
  14. 14.
    Pradeep Narayanan S, Raghavan S (2016) Transdermal drug delivery with tiny (micro) needles—an overview. South Asian J Res Eng Sci and Technol 1:378–387Google Scholar
  15. 15.
    Xiang Z, Wang H, Pant A, Pastorin G, Lee C (2013) Development of vertical SU-8 microneedles for transdermal drug delivery by double drawing lithography technology. Biomicrofluidics 7(6):066501 (1–10)CrossRefGoogle Scholar
  16. 16.
    Van der maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 161:645–655CrossRefGoogle Scholar
  17. 17.
    Pradeep Narayanan S, Raghavan S (2017) Solid silicon microneedles for drug delivery applications. Int J Adv Manuf Technol 93:407–422CrossRefGoogle Scholar
  18. 18.
    Davis SP, Martanto W, Allen MG, Prausnitz MR (2005) Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52:909–915CrossRefGoogle Scholar
  19. 19.
    Kim K, Lee J-B (2007) High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol 13:231–235CrossRefGoogle Scholar
  20. 20.
    Zahn JD, Talbot NH, Liepmann D, Pisano AP (2000) Microfabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed Microdevices 2:295–303CrossRefGoogle Scholar
  21. 21.
    Aggarwal P, Johnston CR (2004) Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sensors Actuators B Chem 102:226–234CrossRefGoogle Scholar
  22. 22.
    Wilke N, Mulcahy A, Ye S-R, Morrissey A (2005) Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 36:650–656CrossRefGoogle Scholar
  23. 23.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100:1484–1489CrossRefGoogle Scholar
  24. 24.
    Arora A, Prausnitz MR, Mitragotri S (2008) Micro-scale devices for transdermal drug delivery. Int J Pharm 364:227–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringKalasalingam Academy of Research and EducationKrishnan KovilIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations