Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy

  • Murshid ImamEmail author
  • Yufeng Sun
  • Hidetoshi Fujii
  • Ninshu MA
  • Seiichiro Tsutsumi
  • Shuja Ahmed
  • Viswanath Chintapenta
  • Hidekazu Murakawa


The microstructure development in the weld key-hole along the plate thickness was investigated through scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) techniques. A fundamental understanding of the contact condition at the tool/workpiece interface in a TriflatTM designed friction stir welding (FSW) tool is presented. The development of grain structure for “stop-action” weld reveals that the plasticized material undergoes complex interacting flows due to the presence of threads and flats. The localized high material velocities induce a significant increase in the strain rate within thread space and thereby tune the Zener-Hollomon parameter. An interesting analogy is drawn between the evolution of the secondary shear zone (SSZ) in a typical metal cutting and the steady state FSW processes. The presence of different morphology of the material filling the thread space is linked to the local variation of the contact state variables along weld thickness. It was found that the contact state is governed by the intrinsic interface characteristics and the mechanical property of the material. It was also shown that the presence of larger particles (> 0.5 μm) is responsible for the formation of high angle boundaries (HAGBs) and random recrystallization texture within the stir zone, reflecting random grain orientation due to particle-stimulated nucleation (PSN).


Friction stir welding Particle-stimulated nucleation Stop-action weld Deformation state Weld key-hole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the staffs of the welding workshop of the Joining and Welding Research Institute of Osaka University for their cooperation and support. The authors also express their sincere thanks to Dr. Probir Saha at Indian Institute of Technology (IIT) Patna for the valuable suggestions in this work.


  1. 1.
    Imam M, Sun Y, Fujii H, Aoki Y, Ninshu MA, Tsutsumi S, Murakawa H (2017) Friction stir welding of thick aluminium welds - challenges and perspectives. Friction Stir Welding and Processing IX:119–124CrossRefGoogle Scholar
  2. 2.
    Perrett JG, Martin J, Threadgil PL, Ahmed MMZ (2000) Recent developments in friction stir welding of thick section aluminium alloys. In: Proceedings of the 6th World Congress Al, pp 13–17Google Scholar
  3. 3.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRefGoogle Scholar
  4. 4.
    Nandan R, DebRoy T, Bhadeshia HK (2008) Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci 53:980–1023CrossRefGoogle Scholar
  5. 5.
    Rai R, De A, Bhadeshia HK, DebRoy T (2011) Friction stir welding tools. Sci Tech Weld Join 16:325–342CrossRefGoogle Scholar
  6. 6.
    Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Q 51:250–261CrossRefGoogle Scholar
  7. 7.
    Imam M, Biswas K, Racherla V (2013) On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys. Mater Des 52:730–739CrossRefGoogle Scholar
  8. 8.
    Liu HJ, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Proc Tech 142:692–696CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Zhang H (2007) Material behaviors and mechanical features in friction stir welding process. Int J Adv Manuf Technol 35:86–100CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Wu Q, Zhang HW (2016) Prediction of fatigue life of welding tool in friction stir welding of AA6061-t6. Int J Adv Manuf Technol 86:3407–3415CrossRefGoogle Scholar
  11. 11.
    Imam M, Racherla V, Biswas K, Fujii H, Chintapenta V, Sun Y, Morisada Y (2017) Microstructure-property relation and evolution in friction stir welding of naturally aged 6063 aluminium alloy. Int J Adv Manuf Technol 91:1753–1769CrossRefGoogle Scholar
  12. 12.
    Thomas WM, Johnson KI, Wiesner CS (2003) Friction stir welding - recent developments in tool and process technologies. Adv Eng Mater 5(7):485–490CrossRefGoogle Scholar
  13. 13.
    Aissani M, Gachi S, Boubenider F, Benkedda Y (2010) Design and optimization of friction stir welding tool. Mater Manuf Proc 25:1199–1205CrossRefGoogle Scholar
  14. 14.
    He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66CrossRefGoogle Scholar
  15. 15.
    Kuykendall K, Nelson T, Sorensen C (2013) On the selection of constitutive laws used in modeling friction stir welding. Int J Mach Tool Manuf 74:74–85CrossRefGoogle Scholar
  16. 16.
    Garcia-Bernal MA, Mishra RS, Verma R, Hernandez-Silva D (2009) High strain rate superplasticity in continuous cast Al-Mg alloys prepared via friction stir processing. Scripta Mater 60:850–853CrossRefGoogle Scholar
  17. 17.
    Chen Y, Ding H, Li J, Cai Z, Zhao J, Yang W (2016) Influence of multi-pass friction stir processing on the microstructureand mechanical properties of Al-5083 alloy. Mater Sci Eng A 650:281–289CrossRefGoogle Scholar
  18. 18.
    Imam M, Sun Y, Fujii H, Ma N, Tsutsumi S, Murakawa H (2017) Microstructural characteristics and mechanical properties of friction stir welded thick 5083 aluminum alloy. Metal Mater Trans A 48:208–229CrossRefGoogle Scholar
  19. 19.
    McNelley TR, Swaminathan S, Su JQ (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater 58(5):349–354CrossRefGoogle Scholar
  20. 20.
    Zhu ZG, Sun YF, Ng FL, Goh MH, Liaw PK, Fujii H, Nguyen QB, Xu Y, Shek CH, Nai SML, Wei J (2018) Friction-stir welding of a ductile high entropy alloy: microstructural evolution and weld strength. Mater Sci Eng A 711:524–532CrossRefGoogle Scholar
  21. 21.
    Attallah MM, Davis CL, Strangwood M (2007) Influence of base metal microstructure on microstructural development in aluminium based alloy friction stir welds. Sci Tech Weld Join 12(4):361–369CrossRefGoogle Scholar
  22. 22.
    Oh-Ishi K, Zhilyaev AP, McNelley TR (2006) A microtexture investigation of recrystallization during friction stir processing of as-cast NiAl bronze. Metal Mater Trans A 37A:2239–2251CrossRefGoogle Scholar
  23. 23.
    Nadammal N, Kailas SV, Szpunar J, Suwas S (2017) Microstructure and texture evolution during single- and Multiple-Pass friction stir processing of Heat-Treatable aluminum alloy 2024. Metal Mater Trans A 48A:4247–4261CrossRefGoogle Scholar
  24. 24.
    Molinari A, Cheriguene R, Miguelez H (2012) Contact variables and thermal effects at the tool-chip interface in orthogonal cutting. Int J Solid Struc 49(26):3774–3796CrossRefGoogle Scholar
  25. 25.
    Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2002) Flow patterns during friction stir welding. Mater Charact 49(2):95–101CrossRefGoogle Scholar
  26. 26.
    Svensson LE, Karlsson L, Larsson H, Karlsson B, Fazzini M, Karlsson J (2000) Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082 5 (5):285–296Google Scholar
  27. 27.
    Sato YS, Seung Park SHC, Kokawa H (2001) Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metal Mater Trans A 32(12):3033–3042CrossRefGoogle Scholar
  28. 28.
    Cahoon JR, Broughton WH, Kutzak AR (1971) The determination of yield strength from hardness measurements. Metal Mater Trans A 2(7):1979–1983Google Scholar
  29. 29.
    Vetrano JS, Bruemmer SM, Pawlowski LM, Robertson IM (1997) Influence of the particle size on recrystallization and grain growth in Al-Mg-X alloys. Mater Sci Eng A 238:101–107CrossRefGoogle Scholar
  30. 30.
    McQueen HJ, Ryan ND (2002) Constitutive analysis in hot working. Mater Sci Eng A 322:43–63CrossRefGoogle Scholar
  31. 31.
    Chan HM, Humphreys FJ (1984) Effect of particle stimulated nucleation on orientation of recrystallized grains. Metal Science 18:527–529CrossRefGoogle Scholar
  32. 32.
    Morita T, Yamanaka M (2014) Microstructural evolution and mechanical properties of friction-stir-welded Al-Mg-Si joint. Mater Sci Eng A 595:196–204CrossRefGoogle Scholar
  33. 33.
    Prangnell PB, Heason CP (2005) Grain structure formation during friction stir welding observed by the ‘stop action technique’. Act Mater 53:3179–3192CrossRefGoogle Scholar
  34. 34.
    Fonda RW, Bingert JF (2007) Texture variations in an aluminum friction stir weld. Scripta Mater 57 (11):1052–1055CrossRefGoogle Scholar
  35. 35.
    Fonda R, Reynolds A, Feng CR, Knipling K, Rowenhorst D (2013) Material flow in friction stir welds. Metal Mater Trans A 44A:337–344CrossRefGoogle Scholar
  36. 36.
    Shen J, Wang F, Suhuddin UF, Hu S, Li W, Dos Santos JF (2015) Crystallographic texture in bobbin tool friction-stir-welded aluminum. Metal. Mater Trans A 46(7):2809–2813CrossRefGoogle Scholar
  37. 37.
    Huang Y, Xie Y, Meng X, Lv Z, Cao J (2018) Numerical design of high depth-to-width ratio friction stir welding. J Mater Proc Tech 252:233–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Murshid Imam
    • 1
    • 2
    Email author
  • Yufeng Sun
    • 3
  • Hidetoshi Fujii
    • 1
  • Ninshu MA
    • 1
  • Seiichiro Tsutsumi
    • 1
  • Shuja Ahmed
    • 2
  • Viswanath Chintapenta
    • 4
  • Hidekazu Murakawa
    • 1
  1. 1.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology PatnaPatnaIndia
  3. 3.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  4. 4.Department of Mechanical and Aerospace EngineeringIndian Institute of Technology HyderabadHyderabadIndia

Personalised recommendations