Advertisement

Laser powder bed fusion in high-pressure atmospheres

  • P. Bidare
  • I. Bitharas
  • R. M. Ward
  • M. M. Attallah
  • A. J. Moore
Open Access
ORIGINAL ARTICLE

Abstract

High-speed imaging and schlieren imaging were used to investigate the interaction of the laser beam with the powder bed at pressures up to 5 bar, in argon and helium atmospheres. The entrainment of powder particles in the flow of shielding gas generated by the laser plume, and hence denudation, was reduced at high pressure for both gases. However, for argon, high pressure increased the temperature of both the melt pool and the laser plume, which significantly increased the generation of spatter and ionisation of the metal vapour with degraded surface smoothness and continuity. For helium, the formation of spatter and plasma did not increase with the increase in pressure above that observed at atmospheric pressure: its higher thermal conductivity and thermal diffusivity limited the laser plume temperature. Layers built at 5 bar in helium had a surface smoothness and continuity comparable to those built in argon at atmospheric pressure, but achieved at a higher laser scan speed, suggesting that a high-pressure helium atmosphere may be used to enhance the build rate.

Keywords

High-speed imaging Laser powder bed fusion High pressure atmosphere Argon atmosphere Helium atmosphere 

Notes

Acknowledgements

The authors are grateful to Jolyon Cleaves of Vision Research for use of the Phantom V2512 high-speed camera, and to Toby Scrivener of Laser 2000 (UK) Ltd. for use of the Lumencor SOLA SM light engine.

Funding information

This work was supported by the Engineering and Physical Sciences Research Council (Grant number EP/K030884/1).

Supplementary material

170_2018_2495_MOESM1_ESM.mp4 (2.3 mb)
Figure 2a (MP4 2343 kb)
170_2018_2495_MOESM2_ESM.mp4 (2.6 mb)
Figure 2b (MP4 2614 kb)
170_2018_2495_MOESM3_ESM.mp4 (2.6 mb)
Figure 2c (MP4 2635 kb)
170_2018_2495_MOESM4_ESM.mp4 (3.6 mb)
Figure 2d (MP4 3654 kb)
170_2018_2495_MOESM5_ESM.mp4 (2 mb)
Figure 2e (MP4 2003 kb)
170_2018_2495_MOESM6_ESM.mp4 (1.3 mb)
Figure 3a (MP4 1297 kb)
170_2018_2495_MOESM7_ESM.mp4 (1.9 mb)
Figure 3b (MP4 1925 kb)
170_2018_2495_MOESM8_ESM.mp4 (752 kb)
Figure 3c (MP4 752 kb)
170_2018_2495_MOESM9_ESM.mp4 (812 kb)
Figure 3d (MP4 811 kb)
170_2018_2495_MOESM10_ESM.mp4 (534 kb)
Figure 3e (MP4 534 kb)
170_2018_2495_MOESM11_ESM.mp4 (954 kb)
Figure 4a (MP4 953 kb)
170_2018_2495_MOESM12_ESM.mp4 (1.1 mb)
Figure 4b (MP4 1146 kb)
170_2018_2495_MOESM13_ESM.mp4 (2 mb)
Figure 4c (MP4 2062 kb)
170_2018_2495_MOESM14_ESM.mp4 (492 kb)
Figure 4d (MP4 492 kb)
170_2018_2495_MOESM15_ESM.mp4 (1.1 mb)
Figure 4e (MP4 1085 kb)
170_2018_2495_MOESM16_ESM.mp4 (2 mb)
Figure 4f (MP4 2021 kb)
170_2018_2495_MOESM17_ESM.mp4 (810 kb)
Figure 4g (MP4 809 kb)
170_2018_2495_MOESM18_ESM.mp4 (1.7 mb)
Figure 4h (MP4 1762 kb)
170_2018_2495_MOESM19_ESM.mp4 (1.5 mb)
Figure 4i (MP4 1530 kb)
170_2018_2495_MOESM20_ESM.mp4 (2.5 mb)
Figure 5a (MP4 2513 kb)
170_2018_2495_MOESM21_ESM.mp4 (763 kb)
Figure 5b (MP4 762 kb)
170_2018_2495_MOESM22_ESM.mp4 (742 kb)
Figure 5c (MP4 741 kb)
170_2018_2495_MOESM23_ESM.mp4 (432 kb)
Figure 5d (MP4 431 kb)
170_2018_2495_MOESM24_ESM.mp4 (24.4 mb)
Figure 7a (MP4 24,950 kb)
170_2018_2495_MOESM25_ESM.mp4 (21.9 mb)
Figure 7b (MP4 22,473 kb)
170_2018_2495_MOESM26_ESM.mp4 (17.9 mb)
Figure 7c (MP4 18,363 kb)
170_2018_2495_MOESM27_ESM.mp4 (21.7 mb)
Figure 7d (MP4 22,169 kb)
170_2018_2495_MOESM28_ESM.mp4 (20.4 mb)
Figure 7e (MP4 20,926 kb)
170_2018_2495_MOESM29_ESM.mp4 (46.2 mb)
Figure 10a (MP4 47,343 kb)
170_2018_2495_MOESM30_ESM.mp4 (25.4 mb)
Figure 10b (MP4 26,042 kb)
170_2018_2495_MOESM31_ESM.mp4 (24.3 mb)
Figure 10c (MP4 24,880 kb)
170_2018_2495_MOESM32_ESM.mp4 (25.2 mb)
Figure 10d (MP4 25,825 kb)

References

  1. 1.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, BostonCrossRefGoogle Scholar
  2. 2.
    Matthews MJ, Guss G, Khairallah SA, Rubenchik AM, Depond PJ, King WE (2016) Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 114:33–42CrossRefGoogle Scholar
  3. 3.
    Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:3602CrossRefGoogle Scholar
  4. 4.
    Bidare P, Bitharas I, Ward M, Attallah MM, Moore AJ (2018) Fluid and particle dynamics in laser powder bed fusion. Acta Mater 142:107–120CrossRefGoogle Scholar
  5. 5.
    Bidare P, Bitharas I, Ward RM, Attallah MM, Moore AJ (2018) Laser powder bed fusion at sub-atmospheric pressures, 130-131 65–72. Int J Mach Tools ManufGoogle Scholar
  6. 6.
    Simonelli M, Tuck C, Aboulkhair NT, Maskery I, Ashcroft I, Wildman RD, Hague R (2015) A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. Metall Mater Trans A 46:3842–3851CrossRefGoogle Scholar
  7. 7.
    Wang X, Read N, Carter LN, Ward RM, Attallah MM (2016) Defect formation and its mitigation in selective laser melting of high γ' Ni-base superalloys in Superalloys 2016. In: Hardy RK et al (eds) . Wiley, pp 351–358Google Scholar
  8. 8.
    Gieseke M, Noelke C, Kaierle S, Wesling V, Haferkamp H (2013) Selective laser melting of magnesium and magnesium alloys. In: Proceedings of Magnesium Technology 2013, The Minerals, Metals and Materials Society. SpringerGoogle Scholar
  9. 9.
    Bidare P, Maier RRJ, Beck RJ, Shephard JD, Moore AJ (2017) An open-architecture metal powder bed fusion system for in-situ process measurements. Addit Manuf 16:177–185CrossRefGoogle Scholar
  10. 10.
    Renishaw plc (2017) Data sheet: SS 316L-0407 powder for additive manufacturingGoogle Scholar
  11. 11.
    Bitharas I, Campbell SW, Galloway AM, McPherson NA, Moore AJ (2016) Visualisation of alternating shielding gas flow in GTAW. Mater Des 91:424–431CrossRefGoogle Scholar
  12. 12.
    Zhang BC, Liao HL, Coddet C (2013) Microstructure evolution and density behavior of CP Ti parts elaborated by self-developed vacuum selective laser melting system. Appl Surf Sci 279:310–316CrossRefGoogle Scholar
  13. 13.
    Masmoudi A, Bolot R, Coddet C (2015) Investigation of the laser-powder-atmosphere interaction zone during the selective laser melting process. J Mater Process Technol 225:122–132CrossRefGoogle Scholar
  14. 14.
    Kim CS (1975) Thermophysical properties of stainless steels, ANL-75-55. Argonne National Laboratory, USACrossRefGoogle Scholar
  15. 15.
    International Atomic Energy Agency (IAEA) (2008) Thermophysical properties of materials for nuclear engineering: a tutorial and collection of dataGoogle Scholar
  16. 16.
    Katayama S, Yohei A, Mizutani M, Kawahito Y (2011) Development of deep penetration welding technology with high brightness laser under vacuum. In: Proceedings Lasers in Manufacturing (LIM), Phys Procedia 12 Part A 75–80CrossRefGoogle Scholar
  17. 17.
    Kawahito Y, Kinoshita K, Matsumoto N, Katayama S (2009) Visualization of refraction and attenuation of near-infrared laser beam due to laser-induced plume. J Laser Appl 21(2):96–101CrossRefGoogle Scholar
  18. 18.
    Verwaerde A, Fabbro R, Deshors G (1995) Experimental study of continuous CO2-laser welding at subatmospheric pressures. J Appl Phys 78(5):2981–2984CrossRefGoogle Scholar
  19. 19.
    Panarella E (1974) Theory of laser-induced gas ionization. Found Phys 4(2):227–259CrossRefGoogle Scholar
  20. 20.
    Morgan CG (1975) Laser-induced breakdown of gases. Rep Prog Phys 38:621–665CrossRefGoogle Scholar
  21. 21.
    Han W (2004) Computational and experimental investigations of laser drilling and welding for microelectronic packaging, PhD thesis, Worcester Polytechnic InstituteGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Heriot-Watt UniversityInstitute of Photonics and Quantum SciencesEdinburghUK
  2. 2.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK

Personalised recommendations