Advertisement

Analysis of the grinding wheel wear in dependency of the cemented carbide specification

  • Christian Wirtz
  • Alexander Dehmer
  • Daniel Trauth
  • Patrick Mattfeld
  • Fritz Klocke
ORIGINAL ARTICLE
  • 49 Downloads

Abstract

Cemented carbides are brittle-hard materials. Their properties are adjusted by the chemical composition, especially the binder fraction and the average hard phase grain size. This research work focuses on grinding of cemented carbides with tungsten carbide (WC) as hard phase and cobalt (Co) as binder phase material. Previous work showed that the WC-Co cemented carbide specification influences the grinding behavior. This study focuses on the influence of the cemented carbide specification on the grinding wheel wear. For this purpose, grinding tests were carried out with cemented carbides that differ in cobalt content and average WC grain size. Based on the thermo-mechanical load collective and the grinding wheel wear, conclusions were drawn about the influence of the cemented carbide specification on the wear behavior of the grinding wheel and the wear mechanisms.

Keywords

Grinding Cemented carbides Thermo-mechanical load Grinding wheel wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the company CERATIZIT S. A. for their support.

Funding information

The authors would like to thank the German Research Foundation (DFG) for funding this research work [grant numbers: KL 500/120-1 and KL 500/120-2].

References

  1. 1.
    Denkena B, Köhler J, Schindler A (2014) Behavior of the magnetic abrasive tool for cutting edge preparation of cemented carbide end mills. Prod Eng Res Dev 8:627–633.  https://doi.org/10.1007/s11740-014-0569-4 CrossRefGoogle Scholar
  2. 2.
    Kieffer R, Benesovsky F (1963) Hartstoffe. Springer, ViennaCrossRefGoogle Scholar
  3. 3.
    Mueller S, Wirtz C, Trauth D, Mattfeld P, Klocke F (2017) Material removal mechanisms in grinding of two-phase brittle materials. Int J Adv Manuf Technol 10:287–298.  https://doi.org/10.1007/s00170-017-1184-2 CrossRefGoogle Scholar
  4. 4.
    Uhlmann E, Schröer N (2016) Werkzeugschleifen mit Hybridschleifscheiben: Vergleich unterschiedlicher Schleifscheibenbindungsspezifikationen beim Nutentiefschliff von Hartmetall. wt Werkstattstechnik online 106:181–186Google Scholar
  5. 5.
    Biermann D, Würz E (2009) A study of grinding silicon nitride and cemented carbide materials with diamond grinding wheels. Prod Eng Res Dev 3:411–416.  https://doi.org/10.1007/s11740-009-0183-z CrossRefGoogle Scholar
  6. 6.
    Zhan YJ, Li Y, Huang H, Xu XP (2009) Wear of brazed diamond wheel in grinding of cemented carbide. Key Eng Mater 416:198–204.  https://doi.org/10.4028/www.scientific.net/KEM.416.198 CrossRefGoogle Scholar
  7. 7.
    Luo SY, Liu YC, Chou CC, Chen TC (2001) Performance of powder filled resin-bonded diamond wheels in the vertical dry grinding of tungsten carbide. J Mater Process Technol 118:329–336.  https://doi.org/10.1016/S0924-0136(01)00861-5 CrossRefGoogle Scholar
  8. 8.
    Heymann T (2015) Schleifen und Polierschleifen von wendelförmigen Spannuten an Vollhartmetallbohrwerkzeugen. Dissertation, TU DortmundGoogle Scholar
  9. 9.
    Abdullah A, Pak A, Farahi M, Barzegari M (2007) Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide. J Mater Process Technol 183:165–168.  https://doi.org/10.1016/j.jmatprotec.2006.09.038 CrossRefGoogle Scholar
  10. 10.
    Badger J (2015) Grinding of sub-micron-grade carbide: contact and wear mechanisms, loading, conditioning, scrubbing and resin-bond degradation. CIRP Ann Manuf Technol 64:341–344.  https://doi.org/10.1016/j.cirp.2015.04.007 CrossRefGoogle Scholar
  11. 11.
    Exner HE (1979) Physical and chemical nature of cemented carbides. Int Met Rev 24:149–173.  https://doi.org/10.1179/imtr.1979.24.1.149 CrossRefGoogle Scholar
  12. 12.
    Ceratizit (2017) Ceratizit Wear Parts: Main Catalogue. https://www.ceratizit.com/uploads/tx_extproduct/files/GD_KT_PRO-0272-0613_SEN_ABS_V1.pdf. Accessed 08 May 2018
  13. 13.
    DIN Deutsches Institut für Normung e.V. (2003) Schleifen mit rotierendem Werkzeugzeug - Einordnung, Unterteilung, Begriffe 01.040.25; 25.020; 25.100.70(8589–11)Google Scholar
  14. 14.
    Wirtz C, Mueller S, Trauth D, Mattfeld P, Klocke F (2017) Influence of the cemented carbide specification on the process force and the process temperature in grinding. Prod Eng Res Devel 11:633–641.  https://doi.org/10.1007/s11740-017-0766-z CrossRefGoogle Scholar
  15. 15.
    Klocke F (2009) Manufacturing processes 2. Springer Berlin Heidelberg, Berlin, HeidelbergCrossRefGoogle Scholar
  16. 16.
    Marinescu ID, Hitchiner MP, Uhlmann ER et al (2007) Handbook of machining with grinding wheels. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Wirtz C (2018) Zerspanverhalten von WC-Co Hartmetallen bei der Schleifbearbeitung. Dissertation, RWTH Aachen UniversityGoogle Scholar
  18. 18.
    Zhang B, Howes TD (1995) Subsurface evaluation of ground ceramics. CIRP Ann Manuf Technol 64:263–266.  https://doi.org/10.1016/S0007-8506(07)62322-1 CrossRefGoogle Scholar
  19. 19.
    Tönshoff HK, Karpuschewski B, Meyer T (1997) Schnellhubschleifen von Hochleistungskeramik. Jahrb Schleif Honen Läppen Polier 58:184–192Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Christian Wirtz
    • 1
  • Alexander Dehmer
    • 1
  • Daniel Trauth
    • 1
  • Patrick Mattfeld
    • 1
  • Fritz Klocke
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations