Advertisement

Research on formability in multi-point forming with different elastic pads

  • Qu Erhu
  • Li MingzheEmail author
  • Li Rui
  • Cui Mingyang
  • Lin Jianlei
ORIGINAL ARTICLE
  • 61 Downloads

Abstract

A strip steel pad with a polyurethane board pad is suggested to improve the quality of multi-point die forming. In this work, the formability of four different forming processes, namely without a cushion, using a polyurethane pad, using a strip steel pad, and using a strip steel pad with a polyurethane board, was compared via numerical simulations and experiments. The results show that using a strip steel pad with a polyurethane board in multi-point die forming can effectively improve the stress and strain of the blank and suppress the defects of dimpling, straight edge, and wrinkling. This work demonstrates that the use of the strip steel pad with a polyurethane board in the multi-point forming process can improve the sheet forming conditions and quality.

Keywords

Multi-point die forming Forming quality Numerical simulation Strip steel pad Dimples Wrinkles Straight edge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai ZY, Wang SH, Li MZ (2008) Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and springback. Int J Adv Manuf Technol 37(9–10):927–936.  https://doi.org/10.1007/s00170-007-1045-5 CrossRefGoogle Scholar
  2. 2.
    Beglarzadeh B (2017) An experimental and numerical study of forming parameters affection on multi-point deep drawing process. Int J Adv Appl Sci 4(1):90–95CrossRefGoogle Scholar
  3. 3.
    Beglarzadeh B, Davoodi B (2016) Numerical simulation and experimental examination of forming defects in multi-point deep drawing process. Mechanika 22(3).  https://doi.org/10.5755/j01.mech.22.3.15252
  4. 4.
    Abosaf M, Essa K, Alghawail A, Tolipov A, Su SZ, Pham D (2017) Optimisation of multi-point forming process parameters. Int J Adv Manuf Technol 92(6):1–11Google Scholar
  5. 5.
    Cai ZY, Li MZ (2001) Optimum path forming technique for sheet metal and its realization in multi-point forming. J Mater Process Technol 110(2):136–141CrossRefGoogle Scholar
  6. 6.
    Li MZ, Cai ZY, Cui XJ (2002) Multi-point forming—a new flexible forming process for sheet metal. Metal Form Technol 20(6):5–9Google Scholar
  7. 7.
    Li MZ, Cai ZY, Sui Z, Yan QG (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129(s1):333–338CrossRefGoogle Scholar
  8. 8.
    Yagami T, Manabe KI, Yang M, Koyama H (2004) Intelligent sheet stamping process using segment blank-holder modules. J Mater Process Technol 155–156(1):2099–2105.  https://doi.org/10.1016/j.jmatprotec.2004.04.144 CrossRefGoogle Scholar
  9. 9.
    Sun G, Li MZ, Cai ZY, Qian ZR (2006) Influence of different technologic modes on wrinkle in multi-point forming of thin sheet metal. J Harbin Inst Technol 38(4):633–635Google Scholar
  10. 10.
    Sun XS, Cai ZY, Li MZ (2006) Numerical analysis of the deformation of elastic cushion and its effect on the forming results in MPF of sheet metal. J Plast Eng 13(2):36–39Google Scholar
  11. 11.
    Kitayama S, Kita K, Yamazaki K (2012) Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network. Int J Adv Manuf Technol 61(9–12):1067–1083.  https://doi.org/10.1007/s00158-012-0824-2 CrossRefGoogle Scholar
  12. 12.
    Liu ZW, Li MZ, Han QG (2012) Multi-point forming with wrinkle resistance function and its forming accuracy. J Mech Eng 48(12):56–62CrossRefGoogle Scholar
  13. 13.
    Davoodi B, Zareh-Desari B (2014) Assessment of forming parameters influencing spring-back in multi-point forming process: a comprehensive experimental and numerical study. Mater Des 59(6):103–114CrossRefGoogle Scholar
  14. 14.
    Abebe M, Lee K, Kang BS (2016) Surrogate-based multi-point forming process optimization for dimpling and wrinkling reduction. Int J Adv Manuf Technol 85(1–4):391–403.  https://doi.org/10.1007/s00170-015-7897-1 CrossRefGoogle Scholar
  15. 15.
    Song XS, Cai ZY, Li MZ (2004) Numerical simulation of dimples and analysis of limit forming forces in multi-point forming of sheet metal. Mater Sci Technol 12(4):368–371Google Scholar
  16. 16.
    Cai ZY, Li MZ, Song XS (2003) Analysis and control of wrinkling in multi-point forming of sheet metal without blank holder. J Plast Eng 10(05):14–19Google Scholar
  17. 17.
    Luo Y, Yang W, Liu Z, Wang YQ, Du RX (2016) Numerical simulation and experimental study on cyclic multi-point incremental forming process. Int J Adv Manuf Technol 85(5–8):1249–1259.  https://doi.org/10.1007/s00170-015-8030-1 CrossRefGoogle Scholar
  18. 18.
    Liu Q, Cheng L, Fu WZ, Tieu K, Li MZ, Gong XP (2012) Optimization of cushion conditions in micro multi-point sheet forming. J Mater Process Technol 212(3):672–677.  https://doi.org/10.1016/j.jmatprotec.2011.07.015 CrossRefGoogle Scholar
  19. 19.
    Liu Y, Li M, Ju FF (2016) Research on the process of flexible blank holder in multi-point forming for spherical surface parts. Int J Adv Manuf Technol 89(5–8):1–8.  https://doi.org/10.1007/s00170-015-8030-1 CrossRefGoogle Scholar
  20. 20.
    Park JW, Kim J, Kim KH, Kang BS (2014) Numerical and experimental study of stretching effect on flexible forming technology. Int J Adv Manuf Technol 73(9):1273–1280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Qu Erhu
    • 1
    • 2
  • Li Mingzhe
    • 1
    • 2
    Email author
  • Li Rui
    • 1
    • 2
  • Cui Mingyang
    • 1
    • 2
  • Lin Jianlei
    • 1
    • 2
  1. 1.Roll Forging InstituteJilin UniversityChangchunChina
  2. 2.College of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations