A critical review of past research and advances in abrasive flow finishing process

ORIGINAL ARTICLE
  • 41 Downloads

Abstract

Abrasive flow finishing (AFF) is an advanced nano-finishing process using abrasive-laden self-deformable putty for finishing, deburring, radiusing, chamfering, stress-relieving, and mirror-like polishing of the complicated components and inaccessible areas which are difficult or impossible to finish by other processes. Since its inception during 1950s, continuous research and advances in AFF are being reported globally. This paper presents comprehensive and critical review of the past research and developments on process modeling, rheological characterization of the AFF medium, development of finishing medium, development of various hybrid, derived, and hybrid-derived processes of AFF, and some novel applications of AFF for complicated shapes and difficult-to-finish materials. Major findings and observations, details of the workpiece material, finishing medium, process parameters, and responses have been presented in a tabular format for quick reference. It also covers some novel applications of AFF in the field of avionics, automobiles, biomedical, gears, additive manufacturing, cutting tool inserts, die and mold manufacturing, and recast layer removal. Finishing results for various materials such as mild steel, brass, aluminum, and its alloys, tool steel, copper, metal matrix composite, and photopolymer resin are also included. It also identifies directions for future research and provides an invaluable list of literature on past research works on AFF process. This review article will be very useful for the researchers working in micro- and nano-finishing applications and the industries involved in manufacturing of the automobiles, aero-engines, avionics components, biomedical implants, gears, impellers, dies and molds, and defense equipment.

Keywords

AFF Nano-finishing Modeling Finishing medium Rheological properties Hybrid processes Derived processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rhoades LJ (1990) Abrasive flow machining for automatic surface finishing and capacitance technology for in-process surface and dimensional metrology. In: Meguid SA (ed) Surface engineering. Springer Netherlands, Dordrecht, pp 456–467.  https://doi.org/10.1007/978-94-009-0773-7_46 CrossRefGoogle Scholar
  2. 2.
    Rhoades L (1991) Abrasive flow machining: a case study. J Mater Process Technol 28(1):107–116.  https://doi.org/10.1016/0924-0136(91)90210-6 CrossRefGoogle Scholar
  3. 3.
    Sankar MR, Jain VK, Ramkumar J (2008) Abrasive flow machining (AFM): an overview, INDO-US Workshop on Smart Machine Tools, Intelligent Machining Systems and Multi-scale Manufacturing, PSG college, Coimbatore, India, pp 1–9. http://home.iitk.ac.in/~jrkumar/invited_talks.php (Accessed on 29 Sep 2014)
  4. 4.
    Extrude Hone Corporation (2015) Advanced manufacturing technologies: abrasive flow machining, Pennsylvania, US, pp 1–20. http://www.extrudehoneafm.com/process/afm-process/ (Accessed on 17 Feb 2016)
  5. 5.
    Howard M, Cheng K (2013) An industrially feasible approach to process optimisation of abrasive flow machining and its implementation perspectives. Proc Inst Mech Eng B J Eng Manuf 227(11):1748–1752.  https://doi.org/10.1177/095440541349195 CrossRefGoogle Scholar
  6. 6.
    Cheema MS, Venkatesh G, Divedi A, Sharma AK (2012) Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media. Proc Inst Mech Eng B J Eng Manuf 226(12):1951–1962.  https://doi.org/10.1177/0954405412462000 CrossRefGoogle Scholar
  7. 7.
    Jain VK, Adsul SG (2000) Experimental investigations into abrasive flow machining (AFM). Int J Mach Tools Manuf 40(7):1003–1021.  https://doi.org/10.1016/S0890-6955(99)00114-5 CrossRefGoogle Scholar
  8. 8.
    Dabrowski L, Marciniak M, Szewczyk T (2006) Analysis of abrasive flow machining with an electrochemical process aid. Proc Inst Mech Eng B J Eng Manuf 220(3):397–403.  https://doi.org/10.1243/095440506X77571 CrossRefGoogle Scholar
  9. 9.
    Williams RE, Rajurkar KP (1992) Stochastic modeling and analysis of abrasive flow machining. J Eng Ind 114(1):74–81.  https://doi.org/10.1115/1.2899761 Google Scholar
  10. 10.
    Sankar MR, Jain VK, Ramkumar J (2009) Experimental investigations into rotating workpiece abrasive flow finishing. Wear 267(1):43–51.  https://doi.org/10.1016/j.wear.2008.11.007 CrossRefGoogle Scholar
  11. 11.
    Mali HS, Manna A (2009) Current status and application of abrasive flow finishing processes: a review. Proc Inst Mech Eng B J Eng Manuf 223(7):809–820.  https://doi.org/10.1243/09544054JEM1311 CrossRefGoogle Scholar
  12. 12.
    Kumar SS, Somashekhar SH (2016) A review on abrasive flow machining (AFM). Procedia Technol 25:1297–1304.  https://doi.org/10.1016/j.protcy.2016.08.224 CrossRefGoogle Scholar
  13. 13.
    Sambharia J, Mali HS (2017) Recent developments in abrasive flow finishing process: a review of current research and future prospects. Proc Inst Mech Eng B J Eng Manuf.  https://doi.org/10.1177/0954405417731466
  14. 14.
    Kohut T (1988) Surface finishing with abrasive flow machining. SME Technical Paper, Proc. 4th International Aluminium Extraction Technology Seminar Washington DC, New York, USA pp 35–42Google Scholar
  15. 15.
    Jain RK, Jain VK, Kalra PK (1999) Modelling of abrasive flow machining process: a neural network approach. Wear 231(2):242–248.  https://doi.org/10.1016/S0043-1648(99)00129-5 CrossRefGoogle Scholar
  16. 16.
    William RE, Rajurkar KP, Rhoades LJ (1989) Performance characteristics of abrasive flow machining. SME Technical paper, FC 89–806 Dearborn, MI, USA, pp 898–906Google Scholar
  17. 17.
    Perry WB (1985) Abrasive flow machining: principles and practices. Proc Non-Traditional Machining Conference, Cincinnati, Ohio, pp 121–128Google Scholar
  18. 18.
    Jain NK, Jain VK, Jha S (2007) Parametric optimization of advanced fine-finishing processes. Int J Adv Manuf Technol 34(11):1191–1213.  https://doi.org/10.1007/s00170-006-0682-4 CrossRefGoogle Scholar
  19. 19.
    Rajeshwar G, Kozak J, Rajurkar KP (1994) Modeling and computer simulation of media flow in abrasive flow machining process. Proceedings of the International Mechanical Engineering Congress and Exposition, ASME, PED 68-2, Chicago, IL, pp 965–971Google Scholar
  20. 20.
    Agrawal A, Jain VK, Muralidhar K (2005) Experimental determination of viscosity of abrasive flow machining media. Int J Manuf Technol Manag 7(2–4):142–156.  https://doi.org/10.1504/IJMTM.2005.006828 Google Scholar
  21. 21.
    Hull J, O’Sullivan D, Fletcher A, Trengove S, Mackie J (1992) Rheology of carrier media used in abrasive flow machining. Key Eng Mater 72-74:617–626.  https://doi.org/10.4028/www.scientific.net/KEM.72-74.617 CrossRefGoogle Scholar
  22. 22.
    Przyklenk K (1986) Abrasive flow machining-a process for surface finishing and deburring of work pieces with a complicated shape by means of abrasive laden media. Adv Nontradit Mach, ASME.PED 22, 101–110Google Scholar
  23. 23.
    Extrude Hone Corporation, Pennsylvania, United States (2017) Abrasive flow machining (AFM). http://extrudehone.com. (Accessed on 18 Sep 2017)
  24. 24.
    Loveless TR, Williams RE, Rajurkar KP (1994) A study of the effects of abrasive-flow finishing on various machined surfaces. J Mater Process Technol 47(1):133–151.  https://doi.org/10.1016/0924-0136(94)90091-4 CrossRefGoogle Scholar
  25. 25.
    Haan JJ, Steif PS (1998) Abrasive wear due to the slow flow of a concentrated suspension. Wear 219(2):177–183.  https://doi.org/10.1016/S0043-1648(98)00191-4 CrossRefGoogle Scholar
  26. 26.
    Kumar TR (1998) Theoretical and experimental investigations into abrasive flow machining process, M. Tech. Thesis, IIT KanpurGoogle Scholar
  27. 27.
    Jain RK, Jain VK, Dixit PM (1999) Modeling of material removal and surface roughness in abrasive flow machining process. Int J Mach Tools Manuf 39(12):1903–1923.  https://doi.org/10.1016/S0890-6955(99)00038-3 CrossRefGoogle Scholar
  28. 28.
    Jain RK, Jain VK (1999) Simulation of surface generated in abrasive flow machining process. Robot Comput Integr Manuf 15(5):403–412.  https://doi.org/10.1016/S0736-5845(99)00046-0 CrossRefGoogle Scholar
  29. 29.
    Jain RK, Jain VK (2000) Optimum selection of machining conditions in abrasive flow machining using neural network. J Mater Process Technol 108(1):62–67.  https://doi.org/10.1016/S0924-0136(00)00621-X CrossRefGoogle Scholar
  30. 30.
    Jain RK, Jain VK (2001) Specific energy and temperature determination in abrasive flow machining process. Int J Mach Tools Manuf 41(12):1689–1704.  https://doi.org/10.1016/S0890-6955(01)00043-8 CrossRefGoogle Scholar
  31. 31.
    Jain RK, Jain VK (2004) Stochastic simulation of active grain density in abrasive flow machining. J Mater Process Technol 152(1):17–22.  https://doi.org/10.1016/j.jmatprotec.2003.11.024 CrossRefGoogle Scholar
  32. 32.
    Gorana VK, Jain VK, Lal GK (2006) Forces prediction during material deformation in abrasive flow machining. Wear 260(1):128–139.  https://doi.org/10.1016/j.wear.2004.12.038 CrossRefGoogle Scholar
  33. 33.
    Gorana VK, Jain VK, Lal GK (2006) Prediction of surface roughness during abrasive flow machining. Int J Adv Manuf Technol 31(3):258–267.  https://doi.org/10.1007/s00170-005-0197-4 CrossRefGoogle Scholar
  34. 34.
    Mollah AA, Pratihar DK (2008) Modeling of TIG welding and abrasive flow machining processes using radial basis function networks. Int J Adv Manuf Technol 37(9):937–952.  https://doi.org/10.1007/s00170-007-1026-8 CrossRefGoogle Scholar
  35. 35.
    Jain VK, Kumar R, Dixit PM, Sidpara A (2009) Investigations into abrasive flow finishing of complex workpieces using FEM. Wear 267(1):71–80.  https://doi.org/10.1016/j.wear.2008.11.005 CrossRefGoogle Scholar
  36. 36.
    Uhlmann E, Mihotovic V, Coenen A (2009) Modelling the abrasive flow machining process on advanced ceramic materials. J Mater Process Technol 209(20):6062–6066.  https://doi.org/10.1016/j.jmatprotec.2009.06.019 CrossRefGoogle Scholar
  37. 37.
    Mali HS, Manna A (2010) Optimum selection of abrasive flow machining conditions during fine finishing of Al/15 wt% SiC-MMC using Taguchi method. Int J Adv Manuf Technol 50(9):1013–1024.  https://doi.org/10.1007/s00170-010-2565-y CrossRefGoogle Scholar
  38. 38.
    Wan S, Ang YJ, Sato T, Lim GC (2014) Process modeling and CFD simulation of two- way abrasive flow machining. Int J Adv Manuf Technol 71(5):1077–1086.  https://doi.org/10.1007/s00170-013-5550-4 CrossRefGoogle Scholar
  39. 39.
    Howard M, Cheng K (2014) An integrated systematic investigation of the process variables on surface generation in abrasive flow machining of titanium alloy 6Al4V. Proc Inst Mech Eng B J Eng Manuf 228(11):1419–1431.  https://doi.org/10.1177/0954405414522210 CrossRefGoogle Scholar
  40. 40.
    Singh S, Raj ASA, Sankar MR, Jain VK (2016) Finishing force analysis and simulation of nano surface roughness in abrasive flow finishing process using medium rheological properties. Int J Adv Manuf Technol 85(9):2163–2178.  https://doi.org/10.1007/s00170-015-8333-2 CrossRefGoogle Scholar
  41. 41.
    Cheng K, Shao Y, Bodenhorst R, Jadva M (2017) Modeling and simulation of material removal rates and profile accuracy control in abrasive flow machining of the integrally bladed rotor blade and experimental perspectives. Trans J Manuf Sci Eng 139(12):121020–121,028.  https://doi.org/10.1115/1.4038027 CrossRefGoogle Scholar
  42. 42.
    Singh S, Ravi Sankar M, Jain VK (2017) Simulation and experimental investigations into abrasive flow nanofinishing of surgical stainless steel tubes. Mach Sci Technol: 1–22.  https://doi.org/10.1080/10910344.2017.1365897
  43. 43.
    Petri KL, Billo RE, Bidanda B (1998) A neural network process model for abrasive flow machining operations. J Manuf Syst 17(1):52–64.  https://doi.org/10.1016/S0278-6125(98)80009-5 CrossRefGoogle Scholar
  44. 44.
    Williams RE (1998) Acoustic emission characteristics of abrasive flow machining. J Manuf Sci Eng 120(2):264–271.  https://doi.org/10.1115/1.2830123 CrossRefGoogle Scholar
  45. 45.
    Davies PJ, Fletcher AJ (1995) The assessment of the rheological characteristics of various polyborosiloxane/grit mixtures as utilized in the abrasive flow machining process. Proc Inst Mech Eng C J Mech Eng Sci 209(6):409–418.  https://doi.org/10.1243/PIME_PROC_1995_209_171_02 CrossRefGoogle Scholar
  46. 46.
    Jain VK, Ranganatha C, Muralidhar K (2001) Evaluation of rheological properties of medium for AFM process. Mach Sci Technol 5(2):151–170.  https://doi.org/10.1081/MST-100107841 CrossRefGoogle Scholar
  47. 47.
    Wang AC, Weng SH (2007) Developing the polymer abrasive gels in AFM process. J Mater Process Technol 192:486–490.  https://doi.org/10.1016/j.jmatprotec.2007.04.082 CrossRefGoogle Scholar
  48. 48.
    Wang AC, Liu CH, Liang KZ, Pai SH (2007) Study of the rheological properties and the finishing behavior of abrasive gels in abrasive flow machining. J Mech Sci Technol 21(10):1593–1598.  https://doi.org/10.1007/BF03177380 CrossRefGoogle Scholar
  49. 49.
    Kar KK, Ravikumar NL, Tailor PB, Ramkumar J, Sathiyamoorthy D (2009) Performance evaluation and rheological characterization of newly developed butyl rubber based media for abrasive flow machining process. J Mater Process Technol 209(4):2212–2221.  https://doi.org/10.1016/j.jmatprotec.2008.05.012 CrossRefGoogle Scholar
  50. 50.
    Kar KK, Ravikumar NL, Tailor PB, Ramkumar J, Sathiyamoorthy D (2009) Preferential media for abrasive flow machining. Trans J Manuf Sci Eng 131(1):011009–011011.  https://doi.org/10.1115/1.3046135 CrossRefGoogle Scholar
  51. 51.
    Rajesha S, Venkatesh G, Sharma AK (2010) Performance study of a natural polymer based media for abrasive flow machining. Indian J Eng Mater Sci 17:407–413Google Scholar
  52. 52.
    Sankar MR, Jain VK, Ramkumar J, Kar KK (2010) Rheological characterization and performance evaluation of a new medium developed for abrasive flow finishing. Int J Precis Technol 1(3–4):302–313CrossRefGoogle Scholar
  53. 53.
    Sankar MR, Jain VK, Ramkumar J, Joshi YM (2011) Rheological characterization of styrene-butadiene based medium and its finishing performance using rotational abrasive flow finishing process. Int J Mach Tools Manuf 51(12):947–957.  https://doi.org/10.1016/j.ijmachtools.2011.08.012 CrossRefGoogle Scholar
  54. 54.
    Bremerstein T, Potthoff A, Michaelis A, Schmiedel C, Uhlmann E, Blug B, Amann T (2015) Wear of abrasive media and its effect on abrasive flow machining results. Wear 342:44–51.  https://doi.org/10.1016/j.wear.2015.08.013 CrossRefGoogle Scholar
  55. 55.
    Gupta K, Jain NK, Laubscher RF (2016) Hybrid machining processes: perspectives on machining and finishing. Springer International Publishing, Switzerland.  https://doi.org/10.1007/978-3-319-25,922-2 (eBook ISBN: 978–3–319-25,922-2)CrossRefGoogle Scholar
  56. 56.
    Singh S, Shan HS (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42(8):953–959.  https://doi.org/10.1016/S0890-6955(02)00021-4 CrossRefGoogle Scholar
  57. 57.
    Singh S, Shan HS, Kumar P (2002) Wear behavior of materials in magnetically assisted abrasive flow machining. J Mater Process Technol 128(1):155–161.  https://doi.org/10.1016/S0924-0136(02)00442-9 CrossRefGoogle Scholar
  58. 58.
    Jha S, Jain VK (2004) Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. Int J Mach Tools Manuf 44(10):1019–1029.  https://doi.org/10.1016/j.ijmachtools.2004.03.007 CrossRefGoogle Scholar
  59. 59.
    Jha S, Jain VK, Komanduri R (2007) Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Technol 33(7):725–729.  https://doi.org/10.1007/s00170-006-0502-x CrossRefGoogle Scholar
  60. 60.
    Das M, Jain VK, Ghoshdastidar PS (2008) Analysis of magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Technol 38(5):613–621.  https://doi.org/10.1007/s00170-007-1095-8 CrossRefGoogle Scholar
  61. 61.
    Ghadikolaei AD, Vahdati M (2014) Experimental study on the effect of finishing parameters on surface roughness in magneto-rheological abrasive flow finishing process. Proc Inst Mech Eng B J Eng Manuf 229(9):1517–1524.  https://doi.org/10.1177/0954405414539488 CrossRefGoogle Scholar
  62. 62.
    Dabrowski L, Marciniak M, Wieczorek W, Zygmunt A (2006) Advancement of abrasive flow machining using an anodic solution. J New Mater Electrochem Syst 9(4):439–445Google Scholar
  63. 63.
    Brar BS, Walia RS, Singh VP (2015) Electrochemical-aided abrasive flow machining (ECA2FM) process: a hybrid machining process. Int J Adv Manuf Technol 79(1):329–342.  https://doi.org/10.1007/s00170-015-6806-y CrossRefGoogle Scholar
  64. 64.
    Jones AR, Hull JB (1998) Ultrasonic flow polishing. Ultrasonics 36(1):97–101.  https://doi.org/10.1016/S0041-624X(97)00147-9 CrossRefGoogle Scholar
  65. 65.
    Jones AR, Hull JB (1995) A model of the pressure distribution within ultrasonically energised polymer suspended abrasive used for surface finishing moulds and dies. Key Eng Mater 99–100:355–362.  https://doi.org/10.4028/www.scientific.net/KEM.99-100.355 CrossRefGoogle Scholar
  66. 66.
    Sharma AK, Venkatesh G, Rajesha S, Kumar P (2015) Experimental investigations into ultrasonic-assisted abrasive flow machining (UAAFM) process. Int J Adv Manuf Technol 80(1):477–493.  https://doi.org/10.1007/s00170-015-7009-2 CrossRefGoogle Scholar
  67. 67.
    Venkatesh G, Sharma AK, Singh N (2015) Simulation of media behavior in vibration assisted abrasive flow machining. Simul Model Pract Theory 51:1–13.  https://doi.org/10.1016/j.simpat.2014.10.009 CrossRefGoogle Scholar
  68. 68.
    Venkatesh G, Sharma AK, Kumar P (2015) On ultrasonic assisted abrasive flow finishing of bevel gears. Int J Mach Tools Manuf 89:29–38.  https://doi.org/10.1016/j.ijmachtools.2014.10.014 CrossRefGoogle Scholar
  69. 69.
    Sankar MR, Jain VK, Ramkumar J (2016) Nano-finishing of cylindrical hard steel tubes using rotational abrasive flow finishing (R-AFF) process. Int J Adv Manuf Technol 85(9):2179–2187.  https://doi.org/10.1007/s00170-015-8189-5 CrossRefGoogle Scholar
  70. 70.
    Brar BS, Walia RS, Singh VP, Sharma M (2013) A robust helical abrasive flow machining (HLX-AFM) process. J Inst Eng C 94(1):21–29.  https://doi.org/10.1007/s40032-012-0054-9 Google Scholar
  71. 71.
    Chen KY, Cheng KC (2014) A study of helical passageways applied to polygon holes in abrasive flow machining. Int J Adv Manuf Technol 74(5):781–790.  https://doi.org/10.1007/s00170-014-5940-2 CrossRefGoogle Scholar
  72. 72.
    Wang AC, Cheng KC, Chen KY, Chien CC (2015) Elucidating the optimal parameters of a helical passageway in abrasive flow machining. Int J Surf Sci Eng 9(2–3):145–158.  https://doi.org/10.1504/IJSURFSE.2015.068239 CrossRefGoogle Scholar
  73. 73.
    Walia RS, Shan HS, Kumar P (2008) Determining dynamically active abrasive particles in the media used in centrifugal force assisted abrasive flow machining process. Int J Adv Manuf Technol 38(11):1157–1164.  https://doi.org/10.1007/s00170-007-1184-8 CrossRefGoogle Scholar
  74. 74.
    Walia RS, Shan HS, Kumar P (2008) Morphology and integrity of surfaces finished by centrifugal force assisted abrasive flow machining. Int J Adv Manuf Technol 39(11):1171–1179.  https://doi.org/10.1007/s00170-007-1301-8 CrossRefGoogle Scholar
  75. 75.
    Sankar MR, Mondal S, Ramkumar J, Jain VK (2009) Experimental investigations and modeling of drill bit-guided abrasive flow finishing (DBG-AFF) process. Int J Adv Manuf Technol 42(7):678–688.  https://doi.org/10.1007/s00170-008-1642-y CrossRefGoogle Scholar
  76. 76.
    Das M, Jain VK, Ghoshdastidar PS (2011) The out-of roundness of the internal surfaces of stainless steel tubes finished by the rotational–magnetorheological abrasive flow finishing process. Mater Manuf Process 26:1073–1084.  https://doi.org/10.1080/10426914.2010.537141 CrossRefGoogle Scholar
  77. 77.
    Das M, Jain VK, Ghoshdastidar PS (2012) Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int J Adv Manuf Technol 62(1):405–420.  https://doi.org/10.1007/s00170-011-3808-2 CrossRefGoogle Scholar
  78. 78.
    Vaishya R, Walia RS, Kalra P (2015) Design and development of hybrid electrochemical and centrifugal force assisted abrasive flow machining. Mater Today 2(4):3327–3341.  https://doi.org/10.1016/j.matpr.2015.07.158 CrossRefGoogle Scholar
  79. 79.
    Fu Y, Wang X, Gao H, Wei H, Li S (2016) Blade surface uniformity of blisk finished by abrasive flow machining. Int J Adv Manuf Technol 84:1725–1735.  https://doi.org/10.1007/s00170-015-8270-0 CrossRefGoogle Scholar
  80. 80.
    Tao Z, Yaoyao S, Xiaojun L, Tianran H (2016) Optimization of abrasive flow polishing process parameters for static blade ring based on response surface methodology. J Mech Sci Technol 30(3):1085–1093.  https://doi.org/10.1007/s12206-016-0213-7 CrossRefGoogle Scholar
  81. 81.
    Subramanian KT, Balashanmugam N, Shashi Kumar PV (2016) Nanometric finishing on biomedical implants by abrasive flow finishing. J Inst Eng C 97(1):55–61.  https://doi.org/10.1007/s40032-015-0190-0 Google Scholar
  82. 82.
    Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178.  https://doi.org/10.1016/j.precisioneng.2015.04.014 CrossRefGoogle Scholar
  83. 83.
    Williams RE, Melton VL (1998) Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp J 4(2):56–67.  https://doi.org/10.1108/13552549810207279 CrossRefGoogle Scholar
  84. 84.
    Kenda J, Duhovnik J, Tavčar J, Kopač J (2014) Abrasive flow machining applied to plastic gear matrix polishing. Int J Adv Manuf Technol 71(1):141–151.  https://doi.org/10.1007/s00170-013-5461-4 CrossRefGoogle Scholar
  85. 85.
    Xu YC, Zhang KH, Lu S, Liu ZQ (2014) Experimental investigations into abrasive flow machining of helical gear. Key Eng Mater 546:65–69.  https://doi.org/10.4028/www.scientific.net/KEM.546.65 CrossRefGoogle Scholar
  86. 86.
    Petare AC, Jain NK (2017) Improving spur gear microgeometry and surface finish by AFF process. Mater Manuf Process.  https://doi.org/10.1080/10426914.2017.1376074
  87. 87.
    Uhlmann E, Richarz S, Mihotovic V (2008) Substrate pre-treatment of cemented carbides using abrasive flow machining and laser beam ablation. Prod Eng 3(1):81.  https://doi.org/10.1007/s11740-008-0145-x CrossRefGoogle Scholar
  88. 88.
    Kenda J, Pusavec F, Kermouche G, Kopac J (2011) Surface integrity in abrasive flow machining of hardened tool steel AISI D2. Procedia Eng 19:172–177.  https://doi.org/10.1016/j.proeng.2011.11.097 CrossRefGoogle Scholar
  89. 89.
    Kenda J, Kermouche G, Dumont F, Rech J, Kopac J (2013) Investigation of the surface integrity induced by abrasive flow machining on AISI D2 hardened steel. Int J Mater Prod Technol 46:19–31.  https://doi.org/10.1504/IJMPT.2013.052788 CrossRefGoogle Scholar
  90. 90.
    Tzeng HJ, Yan BH, Hsu RT, Lin YC (2007) Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces. Int J Adv Manuf Technol 32(11):1163–1169.  https://doi.org/10.1007/s00170-006-0423-8 CrossRefGoogle Scholar
  91. 91.
    Fletcher AJ, Hull JB, Mackie J, Trengove SA (1990) Computer modelling of the abrasive flow machining process. In: Meguid SA (ed) Surface Engineering. Springer Netherlands, Dordrecht, pp 592–601.  https://doi.org/10.1007/978-94-009-0773-7_59 CrossRefGoogle Scholar
  92. 92.
    Zhu L, Wang K, Wu H, Xiu D, Sun L (2015) Research on the methods for common-rail pipe holes abrasive flow machining. Appl Mech Mater 721:122–126.  https://doi.org/10.4028/www.scientific.net/AMM.721.122 CrossRefGoogle Scholar
  93. 93.
    Venkatesh G, Singh T, Sharma AK, Dvivedi A (2014) Finishing of micro-channels using abrasive flow machining. Proceedings of the International Conference on Research and Innovations in Mechanical Engineering: ICRIME-2013. Springer India, New Delhi, pp 243–252.  https://doi.org/10.1007/978-81-322-1859-3_22 Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology IndoreSimrolIndia

Personalised recommendations