Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning

  • 272 Accesses

  • 4 Citations

Abstract

There are many different methods to improve and control surface wettability. One of these methods is the creation of micro- and nanotextures or multiscale textures on the surfaces. In this research, the process of ultrasonic vibration-assisted face-turning (UVAT) was used in order to improve surface wettability of Al7075-T6. To this end, the effect of various parameters in UVAT process including the vibration modes of the tool (CT, LVT, EVT, 3D-VT), cutting speed, and feed rate was examined on the roughness and topography of surfaces and thus on the surface wettability. Surface wettability was estimated through measuring water droplet contact angle in the two directions of cutting speed (θ c ) and feed rate (θ f ). Analysis of the variance of experimental results showed that among the existing parameters, the type of vibration mode, with 65.56 and 60.84% effectiveness, has the greatest impact on the surface wettability (θ c , θ f ), while feed rate, with 95.39% effectiveness, has the greatest impact on anisotropic wettability (Δθ).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Malshe A, Rajurkar K, Samant A, Hansen HN, Bapat S, Jiang W (2013) Bio-inspired functional surfaces for advanced applications. CIRP Annals-Manuf Technol. 62(2):607–628. https://doi.org/10.1016/j.cirp.2013.05.008

  2. 2.

    Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans R Soc Lond A 368(1929):4775–4806. https://doi.org/10.1098/rsta.2010.0201

  3. 3.

    Bhushan B (2009) Biomimetics: lessons from nature–an overview. Philos Trans A Math Phys Eng Sci 367:1445–1486.

  4. 4.

    Bruzzone A, Costa H, Lonardo P, Lucca D (2008) Advances in engineered surfaces for functional performance. CIRP Ann-Manuf Technol. 57(2):750–769. https://doi.org/10.1016/j.cirp.2008.09.003

  5. 5.

    Evans CJ, Bryan JB (1999) “Structured”, “textured” or “engineered” surfaces. CIRP Ann-Manuf Technol 48(2):541–556. https://doi.org/10.1016/S0007-8506(07)63233-8

  6. 6.

    Amini S, Hosseinabadi HN, Sajjady S (2016) Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance. Appl Surf Sci 390:633–648. https://doi.org/10.1016/j.apsusc.2016.07.064

  7. 7.

    Janssen A, Pinedo B, Igartua A, Liiskmann G, Sexton L (2017) Study on friction and wear reducing surface micro-structures for a positive displacement pump handling highly abrasive shale oil. Tribol Int 107:1–9. https://doi.org/10.1016/j.triboint.2016.11.017

  8. 8.

    Segu DZ, Hwang P (2015) Friction control by multi-shape textured surface under pin-on-disc test. Tribol Int 91:111–117. https://doi.org/10.1016/j.triboint.2015.06.028

  9. 9.

    Gu C, Meng X, Xie Y, Yang Y (2016) Effects of surface texturing on ring/liner friction under starved lubrication. Tribol Int 94:591–605. https://doi.org/10.1016/j.triboint.2015.10.024

  10. 10.

    Lu Y, Guo P, Pei P, Ehmann KF (2015) Experimental studies of wettability control on cylindrical surfaces by elliptical vibration texturing. Int J Adv Manuf Technol 76(9-12):1807–1817. https://doi.org/10.1007/s00170-014-6384-4

  11. 11.

    Kumar G, Prabhu KN (2007) Review of non-reactive and reactive wetting of liquids on surfaces. Adv Colloid Interf Sci 133(2):61–89. https://doi.org/10.1016/j.cis.2007.04.009

  12. 12.

    Kim J, Sim SO, Park HW (2016) Fabrication of durable hydrophobic micropatterns on stainless steel using a hybrid irradiation process. Surf Coat Technol 302:535–542. https://doi.org/10.1016/j.surfcoat.2016.06.051

  13. 13.

    Henari F, Blau W (1995) Excimer-laser surface treatment of metals for improved adhesion. Appl Opt 34(3):581–584. https://doi.org/10.1364/AO.34.000581

  14. 14.

    Vaikuntanathan V, Kannan R, Sivakumar D (2010) Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface. Colloids Surf A Physicochem Eng Asp 369(1-3):65–74. https://doi.org/10.1016/j.colsurfa.2010.07.034

  15. 15.

    Gropper D, Wang L, Harvey TJ (2016) Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol Int 94:509–529. https://doi.org/10.1016/j.triboint.2015.10.009

  16. 16.

    Costa H, Hutchings I (2007) Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol Int 40(8):1227–1238. https://doi.org/10.1016/j.triboint.2007.01.014

  17. 17.

    Ingram A, Parker AA (2008) Review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philos Trans R Soc Lond B 363(1502):2465–2480. https://doi.org/10.1098/rstb.2007.2258

  18. 18.

    Park S-G, Moon JH, Lee S-K, Shim J, Yang S-M (2009) Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials. Langmuir 26:1468–1472

  19. 19.

    Hsieh C-C, Yao S-C (2006) Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces. Int J Heat Mass Transf 49(5-6):962–974. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.013

  20. 20.

    Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38(1):71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434

  21. 21.

    de Gennes P-G, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves 1. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-21656-0

  22. 22.

    Tian Y, Jiang L (2013) Wetting: intrinsically robust hydrophobicity. Nat Mater 12(4):291–292. https://doi.org/10.1038/nmat3610

  23. 23.

    Nosonovsky M, Bhushan B (2007) Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107(10-11):969–979. https://doi.org/10.1016/j.ultramic.2007.04.011

  24. 24.

    Lu L, Sun J, Liu Q, Liu X, Tang Y (2017) Influence of electrochemical deposition parameters on capillary performance of a rectangular grooved wick with a porous layer. Int J Heat Mass Transf 109:737–745. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.054

  25. 25.

    Patel P, Choi CK, Meng DD (2010) Superhydrophilic surfaces for antifogging and antifouling microfluidic devices. J Assoc Lab Autom 15(2):114–119. https://doi.org/10.1016/j.jala.2009.10.012

  26. 26.

    Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res, Sect B 208:281–286. https://doi.org/10.1016/S0168-583X(03)00644-X

  27. 27.

    Podgornik B, Vilhena L, Sedlaček M, Rek Z, Žun I (2012) Effectiveness and design of surface texturing for different lubrication regimes. Meccanica 47(7):1613–1622. https://doi.org/10.1007/s11012-012-9540-7

  28. 28.

    Hamilton D, Walowit J, Allen CM (1966) A theory of lubrication by micro-irregularities. ASME. J Basic Eng 88(1):177–185. https://doi.org/10.1115/1.3645799

  29. 29.

    Shinkarenko A, Kligerman Y, Etsion I (2009) The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol Int 42(2):284–292. https://doi.org/10.1016/j.triboint.2008.06.008

  30. 30.

    Pettersson U, Jacobson S (2003) Influence of surface texture on boundary lubricated sliding contacts. Tribol Int 36(11):857–864. https://doi.org/10.1016/S0301-679X(03)00104-X

  31. 31.

    Agbalaka CC, Dandekar AY, Patil SL, Khataniar S, Hemsath J (2008) The effect of wettability on oil recovery: a review. SPE Asia Pacific Oil and Gas Conference and Exhibition: Society of Petroleum Engineers. https://doi.org/10.2118/114496-MS

  32. 32.

    Duncan B, Mera R, Leatherdale D, Taylor M, Musgrove R (2005) Techniques for characterising the wetting, coating and spreading of adhesives on surfaces. National Physical Laboratory Report, DEPC MPR;20

  33. 33.

    Nogi K (2010) The role of wettability in metal–ceramic joining. Scr Mater 62(12):945–948. https://doi.org/10.1016/j.scriptamat.2010.03.007

  34. 34.

    Sajjady S, Abadi HNH, Amini S, Nosouhi R (2015) Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Mater Des 93:311–323.

  35. 35.

    Uehara Y, Wakuda M, Yamauchi Y, Kanzaki S, Sakaguchi S (2004) Tribological properties of dimpled silicon nitride under oil lubrication. J Eur Ceram Soc 24(2):369–373. https://doi.org/10.1016/S0955-2219(03)00220-6

  36. 36.

    Mastud S, Garg M, Singh R, Samuel J, Joshi S (2012) Experimental characterization of vibration-assisted reverse micro electrical discharge machining (EDM) for surface texturing. ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing: American Society of Mechanical Engineers. p 439–48

  37. 37.

    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184. https://doi.org/10.1146/annurev.matsci.28.1.153

  38. 38.

    Ma C, Bai S, Peng X, Meng Y (2013) Anisotropic wettability of laser micro-grooved SiC surfaces. Appl Surf Sci 284:930–935. https://doi.org/10.1016/j.apsusc.2013.08.055

  39. 39.

    Saeidi F, Meylan B, Hoffmann P, Wasmer K (2016) Effect of surface texturing on cast iron reciprocating against steel under starved lubrication conditions: a parametric study. Wear 348:17–26

  40. 40.

    Matsumura T, Sadakata H, Makihata H, Yoshino M (2013) Micro fabrication on cylinder surface for control of wettability. J Manuf Process 15(1):8–13. https://doi.org/10.1016/j.jmapro.2012.09.010

  41. 41.

    Nelson JB, Schwartz DT (2005) Electrochemical printing: in situ characterization using an electrochemical quartz crystal microbalance. J Micromech Microeng 15(12):2479–2484. https://doi.org/10.1088/0960-1317/15/12/033

  42. 42.

    Liu Y, Yin X, Zhang J, Yu S, Han Z, Ren L (2014) A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy. Electrochim Acta 125:395–403. https://doi.org/10.1016/j.electacta.2014.01.135

  43. 43.

    Kwon MH, Jee WY, Chu CN (2015) Fabrication of hydrophobic surfaces using copper electrodeposition and oxidation. Int J Precis Eng Manuf 16(5):877–882. https://doi.org/10.1007/s12541-015-0115-0

  44. 44.

    Horgnies M, Chen J (2014) Superhydrophobic concrete surfaces with integrated microtexture. Cem Concr Compos 52:81–90. https://doi.org/10.1016/j.cemconcomp.2014.05.010

  45. 45.

    Zhang Y, Lan D, Wang Y, Cao H, Zhao Y (2010) Wettability designing by ZnO periodical surface textures. J Colloid Interface Sci 351(1):288–292. https://doi.org/10.1016/j.jcis.2010.07.048

  46. 46.

    Ng M-K, Saxena I, Ehmann KF, Cao J (2016) Improving surface hydrophobicity by microrolling-based texturing. J Micro Nano-Manuf 4(3):031001. https://doi.org/10.1115/1.4033680

  47. 47.

    Moriwaki T, Shamoto E (1991) Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann-Manuf Technol 40(1):559–562. https://doi.org/10.1016/S0007-8506(07)62053-8

  48. 48.

    Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann-Manuf Technol 44(1):31–34. https://doi.org/10.1016/S0007-8506(07)62269-0

  49. 49.

    Li X, Zhang D (2006) Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting. J Mater Process Technol 180(1-3):91–95. https://doi.org/10.1016/j.jmatprotec.2006.05.007

  50. 50.

    Kurosawa MK, Kodaira O, Tsuchitoi Y, Higuchi T (1998) Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. Ultrason Ferroelectr Freq Control IEEE Trans 45(5):1188–1195. https://doi.org/10.1109/58.726442

  51. 51.

    Guo P, Ehmann KF (2011) Development of a new vibrator for elliptical vibration texturing. ASME. International Manufacturing Science and Engineering Conference (1):373–380. https://doi.org/10.1115/MSEC2011-50131

  52. 52.

    Kim GD, Loh BG (2007) An ultrasonic elliptical vibration cutting device for micro V-groove machining: kinematical analysis and micro V-groove machining characteristics. J Mater Process Technol 190(1-3):181–188. https://doi.org/10.1016/j.jmatprotec.2007.02.047

  53. 53.

    Guo P, Ehmann KF (2013) An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int J Mach Tools Manuf 64:85–95. https://doi.org/10.1016/j.ijmachtools.2012.08.003

  54. 54.

    Mack GL (1936) The determination of contact angles from measurements of the dimensions of small bubbles and drops. I. The spheroidal segment method for acute angles. J Phys Chem 40:159–167

  55. 55.

    Mack GL, Lee DA (1936) The determination of contact angles from measurements of the dimensions of small bubbles and drops. II. The sessile drop method for obtuse angles. J Phys Chem 40:169–176

  56. 56.

    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994. https://doi.org/10.1021/ie50320a024

Download references

Author information

Correspondence to S. Amini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseinabadi, H.N., Sajjady, S.A. & Amini, S. Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning. Int J Adv Manuf Technol 96, 2825–2839 (2018). https://doi.org/10.1007/s00170-018-1580-2

Download citation

Keywords

  • Ultrasonic vibration assisted turning
  • Wettability
  • Surface texturing
  • Contact angle
  • Anisotropic wetting