Material extrusion-based additive manufacturing of structurally controlled poly(lactic acid)/carbon nanotube nanocomposites

  • Ali Nadernezhad
  • Serkan Unal
  • Navid Khani
  • Bahattin KocEmail author


The mesostructure of additively manufactured nanocomposite parts can be tailored by the manipulation of process parameters to improve the properties of the final part. The effects of contributing process parameters and their interactions must be identified to be able to tune the properties of additively manufactured (3D-printed) nanocomposites based on their intended applications. Herein, we present the characterization of the effect of three major building parameters, namely layer thickness, infill percentage, and infill pattern, on mechanical and thermal properties of 3D-printed poly(lactic acid) (PLA)/carbon nanotube (CNT) nanocomposites. The characterization of printed parts showed that increasing layer thickness had a deteriorating effect on the mechanical properties regardless of the CNT concentration; however, the Young’s modulus and tensile strength of parts were improved by increasing the CNT content in the same design of mesostructure. Moreover, the thermomechanical analysis showed that the residual thermal stresses of 3D-printed nanocomposites increased by increasing the layer thickness. Furthermore, it was shown that decreasing infill percentage resulted in a non-linear reduction of stiffness, strength, and dimensional stability. Moreover, a honeycomb-shaped infill pattern was introduced for the manufacturing of parts, which has shown more isotropic mechanical properties. The contributions of CNTs in enhancing mechanical properties of 3D-printed nanocomposites were investigated, by considering the induced reinforcing effects as well as the alteration of the crystallization behavior of PLA.


3D printing PLA/CNT nanocomposites Process parameters Mechanical characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) grant number 113M491.


  1. 1.
    Ian Campbell OD, Kowen J, Wohlers T (2018) 3D printing and additive manufacturing state of the industry. In: Annual Worldwide Progress report. Wohlers report. Wohlers Associates, Inc.Google Scholar
  2. 2.
    Dizon JRC, Espera AH, Chen Q, Advincula RC (2017) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67CrossRefGoogle Scholar
  3. 3.
    Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16(3):467–481CrossRefGoogle Scholar
  4. 4.
    Spoerk M, Arbeiter F, Cajner H, Sapkota J, Holzer C (2017) Parametric optimization of intra-and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J Appl Polym Sci 134(41)Google Scholar
  5. 5.
    Fernandez-Vicente M, Calle W, Ferrandiz S, Conejero A (2016) Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print Addit Manuf 3(3):183–192CrossRefGoogle Scholar
  6. 6.
    Tymrak B, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246CrossRefGoogle Scholar
  7. 7.
    Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8(9):5834–5846CrossRefGoogle Scholar
  8. 8.
    Ahn S-H, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping J 8(4):248–257CrossRefGoogle Scholar
  9. 9.
    Cantrell J, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C (2017) Experimental characterization of the mechanical properties of 3D printed ABS and polycarbonate parts. In: Advancement of optical methods in experimental mechanics, volume 3. Springer, pp 89–105Google Scholar
  10. 10.
    Bayraktar Ö, Uzun G, Çakiroğlu R, Guldas A (2017) Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks. Polym Adv Technol 28(8):1044–1051CrossRefGoogle Scholar
  11. 11.
    Mohamed OA, Mohamed OA, Masood SH, Masood SH, Bhowmik JL, Bhowmik JL (2017) Experimental investigation for dynamic stiffness and dimensional accuracy of FDM manufactured part using IV-optimal response surface design. Rapid Prototyping J 23(4):736–749CrossRefGoogle Scholar
  12. 12.
    Baich L, Manogharan G, Marie H (2015) Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manuf 5(3–4):308–319CrossRefGoogle Scholar
  13. 13.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295CrossRefGoogle Scholar
  14. 14.
    Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12(1):47–59CrossRefGoogle Scholar
  15. 15.
    Kalsoom U, Nesterenko PN, Paull B (2016) Recent developments in 3D printable composite materials. RSC Adv 6(65):60355–60371CrossRefGoogle Scholar
  16. 16.
    Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos A Appl Sci Manuf 85:181–191CrossRefGoogle Scholar
  17. 17.
    Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181CrossRefGoogle Scholar
  18. 18.
    Singh R, Sandhu GS, Penna R, Farina I (2017) Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes. Materials 10(8):881CrossRefGoogle Scholar
  19. 19.
    Francis V, Jain PK (2016) Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys Prototyp 11(2):109–121CrossRefGoogle Scholar
  20. 20.
    Dorigato A, Moretti V, Dul S, Unterberger S, Pegoretti A (2017) Electrically conductive nanocomposites for fused deposition modelling. Synth Met 226:7–14CrossRefGoogle Scholar
  21. 21.
    Gardner JM, Sauti G, Kim J-W, Cano RJ, Wincheski RA, Stelter CJ, Grimsley BW, Working DC, Siochi E (2016) 3-D printing of multifunctional carbon nanotube yarn reinforced components. Addit Manuf 12:38–44CrossRefGoogle Scholar
  22. 22.
    Gnanasekaran K, Heijmans T, Van Bennekom S, Woldhuis H, Wijnia S, de With G, Friedrich H (2017) 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28CrossRefGoogle Scholar
  23. 23.
    Berretta S, Davies R, Shyng Y, Wang Y, Ghita O (2017) Fused deposition modelling of high temperature polymers: exploring CNT PEEK composites. Polym Test 63:251–262CrossRefGoogle Scholar
  24. 24.
    Zhu D, Ren Y, Liao G, Jiang S, Liu F, Guo J, Xu G (2017) Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J Appl Polym Sci 134(39):45332CrossRefGoogle Scholar
  25. 25.
    Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86CrossRefGoogle Scholar
  26. 26.
    Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A (2017) Integration of graphene in poly (lactic) acid by 3D printing to develop creep and wear-resistant hierarchical nanocomposites. Polym Compos 149:100Google Scholar
  27. 27.
    Prashantha K, Roger F (2017) Multifunctional properties of 3D printed poly (lactic acid)/graphene nanocomposites by fused deposition modeling. J Macromol Sci A 54(1):24–29CrossRefGoogle Scholar
  28. 28.
    Patanwala HS, Hong D, Vora SR, Bognet B, Ma AW (2018) The microstructure and mechanical properties of 3D printed carbon nanotube-polylactic acid composites. Polym Compos 39(S2):E1060–E1071CrossRefGoogle Scholar
  29. 29.
    Lee C, Kim S, Kim H, Ahn S (2007) Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 187:627–630CrossRefGoogle Scholar
  30. 30.
    Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–1542CrossRefGoogle Scholar
  31. 31.
    Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM (2017) Poly(lactic acid) composites containing carbon-based nanomaterials: a review. Polymers 9(7):269CrossRefGoogle Scholar
  32. 32.
    Sweeney CB, Lackey BA, Pospisil MJ, Achee TC, Hicks VK, Moran AG, Teipel BR, Saed MA, Green MJ (2017) Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci Adv 3(6):e1700262CrossRefGoogle Scholar
  33. 33.
    Baich LJ (2016) Impact of infill design on mechanical strength and production cost in material extrusion based additive manufacturing. Youngstown State UniversityGoogle Scholar
  34. 34.
    Alvarez C, Kenny L, Lagos C, Rodrigo F, Aizpun M (2016) Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ingeniería e Investigación 36(3):110–116CrossRefGoogle Scholar
  35. 35.
    Tsouknidas A, Pantazopoulos M, Katsoulis I, Fasnakis D, Maropoulos S, Michailidis N (2016) Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling. Mater Des 102:41–44CrossRefGoogle Scholar
  36. 36.
    Lužanin O, Movrin D, Plančak M (2014) Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens. J Technol Plasticity 39(1):49–58Google Scholar
  37. 37.
    Carneiro OS, Silva A, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776CrossRefGoogle Scholar
  38. 38.
    Vidović E, Faraguna F, Jukić A (2017) Influence of inorganic fillers on PLA crystallinity and thermal properties. J Therm Anal Calorim 127(1):371–380CrossRefGoogle Scholar
  39. 39.
    Inkinen S, Hakkarainen M, Albertsson A-C, Södergård A (2011) From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532CrossRefGoogle Scholar
  40. 40.
    Quan H, Zhang S-J, Qiao J-L, Zhang L-Y (2012) The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes. Polymer 53(20):4547–4552CrossRefGoogle Scholar
  41. 41.
    Bhattacharyya AR, Sreekumar T, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377CrossRefGoogle Scholar
  42. 42.
    Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37(12):1657–1677CrossRefGoogle Scholar
  43. 43.
    Wunderlich B (1980) Crystal melting. Academic PressGoogle Scholar
  44. 44.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly (L-lactic acid). J Polym Sci B Polym Phys 42(1):25–32CrossRefGoogle Scholar
  45. 45.
    Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301(2):125–130CrossRefGoogle Scholar
  46. 46.
    Spoerk M, Savandaiah C, Arbeiter F, Sapkota J, Holzer C (2017) Optimization of mechanical properties of glass-spheres-filled polypropylene composites for extrusion-based additive manufacturing. Polym ComposGoogle Scholar
  47. 47.
    Wang L, Gramlich WM, Gardner D (2017) Improving the impact strength of poly(lactic acid)(PLA) in fused layer modeling (FLM). Polymer 114:242–248CrossRefGoogle Scholar
  48. 48.
    Mat Desa M, Hassan A, Arsad A, Mohammad N (2014) Mechanical properties of poly (lactic acid)/multiwalled carbon nanotubes nanocomposites. Mater Res Innovations 18(sup6):S6–14–S16–17CrossRefGoogle Scholar
  49. 49.
    Novais RM, Simon F, Pötschke P, Villmow T, Covas JA, Paiva MC (2013) Poly (lactic acid) composites with poly (lactic acid)-modified carbon nanotubes. J Polym Sci A Polym Chem 51(17):3740–3750CrossRefGoogle Scholar
  50. 50.
    Moon SI, Jin F, Lee CJ, Tsutsumi S, Hyon SH (2005) Novel carbon nanotube/poly(L-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. In: Macromolecular Symposia, vol 1. Wiley Online Library, pp 287–296Google Scholar
  51. 51.
    Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462CrossRefGoogle Scholar
  52. 52.
    Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping J 21(5):604–617CrossRefGoogle Scholar
  53. 53.
    Arbeiter F, Spoerk M, Wiener J, Gosch A, Pinter G (2018) Fracture mechanical characterization and lifetime estimation of near-homogeneous components produced by fused filament fabrication. Polym Test 66:105–113CrossRefGoogle Scholar
  54. 54.
    Ziemian C, Sharma M, Ziemian S (2012) Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. In: Mechanical engineering. InTechGoogle Scholar
  55. 55.
    Koch C, Van Hulle L, Rudolph N (2017) Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit ManufGoogle Scholar
  56. 56.
    Zou R, Xia Y, Liu S, Hu P, Hou W, Hu Q, Shan C (2016) Isotropic and anisotropic elasticity and yielding of 3D printed material. Compos Part B Eng 99:506–513CrossRefGoogle Scholar
  57. 57.
    Kantaros A, Karalekas D (2013) Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des 50:44–50CrossRefGoogle Scholar
  58. 58.
    D'Amico AA, Debaie A, Peterson AM (2017) Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyping J (just-accepted):00–00Google Scholar
  59. 59.
    Wang T-M, Xi J-T, Jin Y (2007) A model research for prototype warp deformation in the FDM process. Int J Adv Manuf Technol 33(11):1087–1096CrossRefGoogle Scholar
  60. 60.
    Sun Q, Rizvi G, Bellehumeur C, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping J 14(2):72–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Ali Nadernezhad
    • 1
  • Serkan Unal
    • 2
  • Navid Khani
    • 1
  • Bahattin Koc
    • 1
    • 2
    Email author
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Sabanci University Integrated Manufacturing Technologies Research and Application CenterIstanbulTurkey

Personalised recommendations