Processing strategies for single point incremental forming—a CAM approach

  • Melania Tera
  • Radu-Eugen Breaz
  • Sever-Gabriel Racz
  • Claudia-Emilia Girjob


Single point incremental forming (SPIF) is a promising manufacturing process, but its industrial implementation is hindered by the lack of computer-assisted tools. CAD/CAM solutions which can be directly applied for other machining processes (milling) can hardly be used for SPIF. This paper emphasizes some particularities of using CAD/CAM (computer-aided design/computer-aided manufacturing) tools for SPIF and analyze six CAM-based processing strategies, based upon different toolpaths. The proposed strategies are compared with regard to formability and accuracy of the machined parts, processing time, surface quality, and ease of toolpath generation. Finally, an analytic hierarchy process (AHP) technique, based upon the experimental results, is used for selecting the best processing strategy. The results of the AHP have indicated as the best choice a two-stage processing strategy, involving a roughing stage and a two-pass finishing stage.


Incremental forming CAD/CAM CNC Processing strategies Toolpaths AHP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The experimental test unfolded within this research work were partially supported by a grant of the Romanian Ministry of Research and Innovation CCCDI-UEFISCDI, project number PN-III - P1-1.2 - PCCDI-2017-0446 /nr. 82PCCDI/2018, within PNCDI III, project title: Intelligent manufacturing technologies for advanced production of parts.


  1. 1.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(1):623–650. Google Scholar
  2. 2.
    Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 479-499:87. Google Scholar
  3. 3.
    Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. J Manuf Process 37-62:27. Google Scholar
  4. 4.
    Filice L, Fantini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann Manuf Technol 51(1):199–202. CrossRefGoogle Scholar
  5. 5.
    Dejardin S, Thibaud S, Gelin JC, Michel G (2010) Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts. J Mater Process Technol 210:363–369. CrossRefGoogle Scholar
  6. 6.
    Jackson KP, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209:1158–1174. CrossRefGoogle Scholar
  7. 7.
    Bambach M, Hirt G, Junk S (2003) Modelling and experimental evaluation of the incremental CNC sheet metal forming process. In: Proceedings of the 7th international conference on computational plasticity. Barcelona, Spain, pp 1–15Google Scholar
  8. 8.
    Allwood JM, Shouler DR, Tekkaya AE (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 621-628:344. Google Scholar
  9. 9.
    Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. Int J Mater Process Technol 191:390–395. CrossRefGoogle Scholar
  10. 10.
    Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the accuracy in asymmetric single point incremental forming. Prod Eng Res Devel 3:145–156. CrossRefGoogle Scholar
  11. 11.
    Skjoedt M, Hancock MH, Bay N (2007) Creating helical tool paths for single point incremental forming. Key Eng Mater 344:583–590. CrossRefGoogle Scholar
  12. 12.
    Verbert J, Duflou JR, Lauwers B (2007) Feature based approach for increasing the accuracy of the SPIF process. Key Eng Mater 344:527–534. CrossRefGoogle Scholar
  13. 13.
    Attanasio A, Ceretti E, Giardini C, Mazzoni L (2008) Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. J Mater Process Technol 197(1–3):59–67. CrossRefGoogle Scholar
  14. 14.
    Malhotra R, Reddy NV, Cao JA (2010) Automatic 3D spiral toolpath generation for single point incremental forming. J Manuf Sci E-T ASME, 132(6).
  15. 15.
    Malhotra R, Bhattacharya A, Kumar A, Reddy N, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60:323–326. CrossRefGoogle Scholar
  16. 16.
    Zhu H, Liu Z, Fu J (2011) Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming. Int J Adv Manuf Technol 911-919:54. Google Scholar
  17. 17.
    Ambrogio G, Costantino I, De Napoli L, Filice L, Fratini L, Muzzupappa M (2004) Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. J Mater Process Technol 153–154:501–507.
  18. 18.
    Rauch M, Hascoet JY, Hamann JC, Plennel Y (2008) A new approach for tool path programming in incremental sheet forming. Int J Mater Forming 1(1):1191–1194. CrossRefGoogle Scholar
  19. 19.
    Rauch M, Hascoet JY, Hamann JC, Plennel Y (2009) Tool path programming optimization for incremental sheet forming applications. Comput Aided Des 41:877–885. CrossRefGoogle Scholar
  20. 20.
    Behera AK, Verbert J, Lauwers B, Duflou JR (2013) Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. Comput Aided Des 45:575–590. CrossRefGoogle Scholar
  21. 21.
    Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53(1):203–206. CrossRefGoogle Scholar
  22. 22.
    Fu Z, Mo J, Han F, Pan G (2013) Tool path correction algorithm for single-point incremental forming of sheet metal. Int J Adv Manuf Technol 64:1239–1248. CrossRefGoogle Scholar
  23. 23.
    Fiorentino A, Giardini C, Ceretti E (2015) Application of artificial cognitive system to incremental sheet forming machine tools for part precision improvement. Precis Eng 39:167–172. CrossRefGoogle Scholar
  24. 24.
    Fiorentino A, Feriti GC, Giardini C, Ceretti E (2015) Part precision improvement in incremental sheet forming of not axisymmetric parts using an artificial cognitive system. J Manuf Syst 35:215–222. CrossRefGoogle Scholar
  25. 25.
    Liu Z, Daniel WJT, Li Y, Liu S, Meehan PA (2014) Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation. J Mater Process Technol 214:620–634. CrossRefGoogle Scholar
  26. 26.
    Zhang C, Xiao HF, Yu DH (2013) Incremental forming path-generated method based on the intermediate models of bulging simulation. Int J Adv Manuf Technol 67:2837–2844. CrossRefGoogle Scholar
  27. 27.
    Tera M (2012) Contributions regarding the deep drawing of bimetallic sheets. Ph. D. Thesism, Lucian Blaga University of Sibiu, Sibiu, RomaniaGoogle Scholar
  28. 28.
    Breaz R, Bologa O, Tera M, Racz G (2012) Researches regarding the use of complex trajectories and two stages processing in single point incremental forming of two layers sheet. In: Proceedings of the 14th conference on metal forming, Krakow, Poland, September 16-19, published on Steel Research International, Special Edition, Publishing Company Verlag Stahleisen Gmbh, pp 427–430Google Scholar
  29. 29.
    Breaz R, Bologa O, Tera M, Racz G (2013) Computer assisted techniques for the incremental forming technology. In: IEEE 18th conference on emerging technologies & factory automation (ETFA), Cagliari, Italy.
  30. 30.
    Muresan G, Morar L, Breaz RE (2014) The influence of tool trajectories upon the accuracy of the manufacturated parts. Acad J Manag Eng 12(1):62–67Google Scholar
  31. 31.
    Tera M, Breaz R, Bologa O, Racz G (2015) Developing a knowledge base about the technological forces within the asymmetric incremental forming process. Key Eng Mater 1115–1121:651–653. Google Scholar
  32. 32.
    Saaty T (1980) The analytic hierarchy process. McGraw-Hill, New YorkzbMATHGoogle Scholar
  33. 33.
    Saaty T (2001) Decision making for leaders: the analytic hierarchy process for decisions in a complex word, University of Pittsburgh. RWS Publications, PittsburghGoogle Scholar
  34. 34.
    Alonso J, Lamata T (2006) Consistency in the analytic hierarchy process: a new approach. Int J Uncertain Fuzz 14:445–459. CrossRefzbMATHGoogle Scholar
  35. 35.
    Cabala P (2010) Using the analytic hierarchy process in evaluating decision alternatives. Oper Res Decisions 1:5–23MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial Machines and Equipment, Engineering FacultyLucian Blaga University of SibiuSibiuRomania

Personalised recommendations