Multi-step approach for automated scaling of photogrammetric micro-measurements

  • A. Frangione
  • A. J. Sanchez Salmeron
  • F. Modica
  • G. PercocoEmail author


Photogrammetry can be used for the measurement of small objects with micro-features, with good results, low costs, and the possible addition of texture information to the 3D models. The performance of this technique is strongly affected by the scaling method, since it retrieves a model that must be scaled after its elaboration. In this paper, a fully automated multi-step scaling system is presented, which is based on machine vision algorithms for retrieving blurred areas. This method allows researchers to find the correct scale factor for a photogrammetric micro model and is experimentally compared to the existing manual method basing on the German guideline VDI/VDE 2634, Part 3. The experimental tests are performed on millimeter-sized certified workpieces, finding micrometric errors, when referred to reference measurements. As a consequence, the method is candidate to be used for measurements of micro-features. The proposed tool improves the performance of the manual method by eliminating operator-dependent procedures. The software tool is available online as supplementary material and represents a powerful tool to face scaling issues of micro-photogrammetric activities.


Measurement Micro-features Photogrammetry Depth from focus Scale International standards Image analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uhlmann E, Mullany B, Biermann D, Rajurkar KP, Hausotte T, Brinksmeier E (2016) Process chains for high-precision components with micro-scale features. CIRP Ann Manuf Technol 65(2):549–572CrossRefGoogle Scholar
  2. 2.
    Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835CrossRefGoogle Scholar
  3. 3.
    Gallo A, Muzzupappa M, Bruno F (2014) 3D reconstruction of small sized objects from a sequence of multi-focused images. J Cult Herit 15(2):173–182CrossRefGoogle Scholar
  4. 4.
    Robinson A, McCarthy M, Brown S, Evenden A, Zou L (2012) Improving the quality of measurements through the implementation of customised standards. Proc. 3rd Int. Conf. 3D Body Scanning Technol. Lugano, Switzerland, 16–17 Oct. 2012, no. October, pp 235–246Google Scholar
  5. 5.
    Percoco G, Sánchez Salmerón AJ (2015) Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view. Meas Sci Technol 26(9):095203CrossRefGoogle Scholar
  6. 6.
    Galantucci LM, Pesce M, Lavecchia F (2015) A powerful scanning methodology for 3D measurements of small parts with complex surfaces and sub millimeter-sized features, based on close range photogrammetry. Precis EngGoogle Scholar
  7. 7.
    Percoco G, Lavecchia F, Salmerón AJS (2015) Preliminary study on the 3D digitization of millimeter scale products by means of photogrammetry. Procedia CIRP 33:257–262.
  8. 8.
    Atsushi K, Sueyasu H, Funayama Y, Maekawa T (2011) System for reconstruction of three-dimensional micro objects from multiple photographic images. CAD Comput Aided Des 43(8):1045–1055CrossRefGoogle Scholar
  9. 9.
    Sims-Waterhouse D, Piano S, Leach R (2017) Verification of micro-scale photogrammetry for smooth three-dimensional object measurement. Meas Sci Technol 28(5):55010CrossRefGoogle Scholar
  10. 10.
    Sims-Waterhouse D, Bointon P, Piano S, Leach RK (2017) Experimental comparison of photogrammetry for additive manufactured parts with and without laser speckle projection. In: Proceedings of SPIE - The International Society for Optical Engineering, vol 10329Google Scholar
  11. 11.
    Percoco G, Guerra MG, Sanchez Salmeron AJ, Galantucci LM (2017) Experimental investigation on camera calibration for 3D photogrammetric scanning of micro-features for micrometric resolution. Int J Adv Manuf Technol 91(9–12):2935–2947CrossRefGoogle Scholar
  12. 12.
    Sims-Waterhouse D, Bointon P, Piano S, Leach RK (2017) Experimental comparison of photogrammetry for additive manufactured parts with and without laser speckle projection. vol 10329, p 103290WGoogle Scholar
  13. 13.
    Lavecchia F, Guerra MG, Galantucci LM (2017) The influence of software algorithms on photogrammetric micro-feature measurement’s uncertainty. Int J Adv Manuf Technol 93(9–12):3991–4005.
  14. 14.
    Abbas MA, Setan H, Majid Z, Chong AK, Lichti DD (2014) Improvement in measurement accuracy for hybrid scanner. IOP Conf Ser Earth Environ Sci 18:012066CrossRefGoogle Scholar
  15. 15.
    Toschi I, Nocerino E, Hess M, Menna F, Sargeant B, Macdonald L, Remondino F, Robson S Improving automated 3D reconstruction methods via vision metrology. no. iGoogle Scholar
  16. 16.
    Jiang R, Jáuregui DV, White KR (2008) Close-range photogrammetry applications in bridge measurement: literature review. Meas J Int Meas Confed 41(8):823–834.
  17. 17.
    Laasonen M (2005) Recognition of building parts from measured data. MeasurementGoogle Scholar
  18. 18.
    Estler WT, Edmundson KL, Peggs GN, Parker DH (2002) Large-scale metrology – an update. CIRP Annals - Manufacturing Technology 51(2):587–609.
  19. 19.
    Galantucci LM, Lavecchia F, Percoco G, Raspatelli S (2014) New method to calibrate and validate a high-resolution 3D scanner, based on photogrammetry. Precis Eng 38(2):279–291.
  20. 20.
    Ahmadabadian AH, Robson S, Boehm J, Shortis M, Wenzel K, Fritsch D (2013) A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS J Photogramm Remote Sens 78:157–167CrossRefGoogle Scholar
  21. 21.
    Klein L, Li N, Becerik-Gerber B (2012) Imaged-based verification of as-built documentation of operational buildings. Autom Constr 21(1):161–171CrossRefGoogle Scholar
  22. 22.
    González-Jorge H, Riveiro B, Arias P, Armesto J (2012) Photogrammetry and laser scanner technology applied to length measurements in car testing laboratories. Meas J Int Meas Confed 45(3):354–363CrossRefGoogle Scholar
  23. 23.
    Luhmann T (2010) Close range photogrammetry for industrial applications. ISPRS J Photogramm Remote Sens 65(6):558–569CrossRefGoogle Scholar
  24. 24.
    Percoco G, Modica F, Fanelli S (2017) Image analysis for 3D micro-features: a new hybrid measurement method. Precis Eng 48:123–132CrossRefGoogle Scholar
  25. 25.
    Cultural Heritage Imaging (2015) Guidelines for calibrated scale bar placement and processing. pp 1–11. Accessed 4 Jan 2019
  26. 26.
    Agisoft LLC (2011) Agisoft PhotoScan user manual. p 37. Accessed 4 Jan 2019
  27. 27.
    VDI/VDE 2634 (2008) Verein Deutscher Ingenieure - Verband der Elektrotechnik Elektronik Informationstechnik. VDI/VDE 2634, Part 3. Optische 3-D-Messsysteme Bildgebende Systeme mit flächenhafter Antastung in mehreren Einzelansichten. Düsseldorf, GermanyGoogle Scholar
  28. 28.
    Pertuz S, Puig D, Garcia MA (2013) Analysis of focus measure operators for shape-from-focus. Pattern Recogn 46(5):1415–1432.
  29. 29.
    Lorenzo J, Castrillón M, Méndez J, Déniz O (2008) Exploring the use of local binary patterns as focus measure. In: 2008 International Conference on Computational Intelligence for Modelling Control and Automation. CIMCA 2008Google Scholar
  30. 30.
    Yi X, Eramian M (2016) LBP-based segmentation of defocus blur. IEEE Trans Image Process 25(4):1626–1638MathSciNetCrossRefGoogle Scholar
  31. 31.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  32. 32.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59CrossRefGoogle Scholar
  33. 33.
    Viola P and Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol 1, pp I-511-I-518Google Scholar
  34. 34.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefzbMATHGoogle Scholar
  35. 35.
    Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662CrossRefGoogle Scholar
  36. 36.
    Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242CrossRefGoogle Scholar
  37. 37.
    Lei H, Xie H, Zou W, Sun X, Kpalma K, Komodakis N (2017) Hierarchical saliency detection via probabilistic object boundaries. Int J Pattern Recognit Artif Intell 31(6):1755010CrossRefGoogle Scholar
  38. 38.
    Shi J, Xu L, Jia J (2014) Discriminative blur detection features. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. pp 2965–2972Google Scholar
  39. 39.
    K. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate inference: an empirical study,” 2013Google Scholar
  40. 40.
    Maurer CR, Qi R, Raghavan V (2003) A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Pattern Anal Mach Intell 25(2):265–270CrossRefGoogle Scholar
  41. 41.
    Joint Committee For Guides In Metrology (JCGM) (2008) International vocabulary of metrology — basic and general concepts and associated terms (VIM). VIM3 Int Vocab Metrol, vol 3, no Vim, p 104Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Meccanica, Matematica e ManagementPolitecnico di BariBariItaly
  2. 2.Departamento de Ingeniería de Sistemas y AutomáticaUniversitat Politécnica de ValenciaValenciaSpain
  3. 3.Consiglio Nazionale delle RicercheIstituto per le Tecnologie Industriali e l’AutomazioneBariItaly

Personalised recommendations