Advertisement

Model of tool loads in dry diamond wire grinding of steel

  • L. TatzigEmail author
  • T. Grove
  • B. Denkena
ORIGINAL ARTICLE
  • 9 Downloads

Abstract

Dry diamond wire grinding of steel is associated with high tool wear restricting productivity as well as tool life. Therefore, the process has to be designed properly to ensure an economic cut. This paper introduces a process model for the dry diamond wire grinding of steel based on analytical and experimental results. The model describes fundamental influences of input parameters on mechanical and thermal tool loads by means of process kinematics and undeformed chip parameters. It is shown that tool temperatures are directly related to tangential grinding forces. The model is verified by experimental results showing high correlation of calculated and measured values.

Keywords

Diamond wire grinding Steel Dry machining Process modeling Grinding force Tool temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported by the German Federal Ministry of Education and Research (BMBF) [grant number 15S9134].

References

  1. 1.
    NN (2014) World Energy Outlook 2014 Factsheet, International Energy Agency, Paris. http://www.worldenergyoutlook.org/media/weowebsite/2014/141112_weo_factsheets.pdf
  2. 2.
    NN (1999) State of the art technology for decontamination and dismantling of nuclear facilities - part ii, Tech Rep 395, International Atomic Energy Agency. http://www-pub.iaea.org/mtcd/publications/pdf/trs395_scr/d395_part2_scr.pdf
  3. 3.
    NN (1998) Liquid nitrogen-cooled diamond-wire concrete cutting, Innovative Technology Summary Report DOE/EM–0392, U.S. Department of Energy, Office of Environmental Management, Office of Science and Technology. http://digital.library.unt.edu/ark:/67531/metadc679298/
  4. 4.
    Steiner H Nuclear decommissioning - planning, execution and international experience, Woodhead Publishing, 2012, Ch. Dismantling and demolition processes and technologies in nuclear decommissioning projects :293–318.  https://doi.org/10.1533/9780857095336.2.293
  5. 5.
    Tönshoff HK, Hillmann-Apmann H (2002) Diamond tools for wire sawing metal components. Diamond Relat Mater 11:742–748.  https://doi.org/10.1016/s0925-9635(01)00727-0 CrossRefGoogle Scholar
  6. 6.
    Apmann H (2004) Seilschleifen von metallischen und mineralischen Werkstoffen, Berichte aus dem IFW, Dr.-Ing.-Dissertation, Universität HannoverGoogle Scholar
  7. 7.
    Turchetta S, Sorrentino L, Bellini C (2017) A method to optimize the diamond wire cutting process. Diamond Relat Mater 71:90–97.  https://doi.org/10.1016/j.diamond.2016.11.016 CrossRefGoogle Scholar
  8. 8.
    Wang J, Yu T, Ding W, Fu Y, Bastawros AF (2018) Wear evolution and stress distribution of single CBN superabrasive grain in high-speed grinding. Precis Eng 54:70–80.  https://doi.org/10.1016/j.precisioneng.2018.05.003 CrossRefGoogle Scholar
  9. 9.
    Qian N, Ding W, Zhu Y (2018) Comparative investigation on grindability of k4125 and inconel718 nickel-based superalloys. Int J Adv Manuf Technol 97(5–8):1649–1661.  https://doi.org/10.1007/s00170-018-1993-y CrossRefGoogle Scholar
  10. 10.
    Liu C, Ding W, Yu T, Yang T (2018) Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precis Eng 51:68–77.  https://doi.org/10.1016/j.precisioneng.2017.07.012 CrossRefGoogle Scholar
  11. 11.
    Zhou H, Ding W, Liu C Material removal mechanism of PTMCs in high-speed grinding when considering consecutive action of two abrasive grains. Int J Adv Manuf Technol  https://doi.org/10.1007/s00170-018-2685-3
  12. 12.
    Denkena B, Köhler J, Seiffert F (2011) Alternative cooling strategy for the wire sawing process in the dismantling of nuclear power plants - comparison of the process behaviour on steel with and without coolant supply. In: Proceedings of 10th International Symposium “Conditioning of radioactive operational & decommissioning wastes”. Dresden, pp 199–214Google Scholar
  13. 13.
    Hilsch R (1946) Die Expansion von Gasen im Zentrifugalfeld als Kalteprozess̈. Zeitschrift für Naturforschung 1:208–214Google Scholar
  14. 14.
    Deemter JJV (1952) On the theory of the ranque-hilsch cooling effect. Applied Scientific Research, Section A 3:174–196.  https://doi.org/10.1007/bf03184927 CrossRefGoogle Scholar
  15. 15.
    Liu S, Xiao B, Xiao H, Meng L, Zhang Z, Wu H (2016) Characteristics of al2o3/diamond/c-bn/sic grain steel brazing joints using cu–sn–ti active filler powder alloys. Surf Coat Technol 286:376–382.  https://doi.org/10.1016/j.surfcoat.2015.12.055 CrossRefGoogle Scholar
  16. 16.
    Artini C, Muolo ML, Passerone A (2012) Diamond-metal interfaces in cutting tools: a review. J Mater Sci 47:3252–3264.  https://doi.org/10.1007/s10853-011-6164-6 CrossRefGoogle Scholar
  17. 17.
    Wu H (2016) Wire sawing technology: a state-of-the-art review. Precis Eng 43:1–9.  https://doi.org/10.1016/j.precisioneng.2015.08.008 CrossRefGoogle Scholar
  18. 18.
    Liedke T, Kuna M (2011) A macroscopic mechanical model of the wire sawing process. Int J Mach Tools Manuf 51:711–720.  https://doi.org/10.1016/j.ijmachtools.2011.05.005 CrossRefGoogle Scholar
  19. 19.
    Armarego EJA, Brown RH (1961) On the size effect in metal cutting. Int J Prod Res 1:75–99.  https://doi.org/10.1080/00207546108943090 CrossRefGoogle Scholar
  20. 20.
    Shaw MC (2003) The size effect in metal cutting. Sadhana 28:875–896.  https://doi.org/10.1007/bf02703319 CrossRefGoogle Scholar
  21. 21.
    Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58:566–587.  https://doi.org/10.1016/j.cirp.2009.09.002 CrossRefGoogle Scholar
  22. 22.
    Denkena B, Grove T, Tatzig L (2017) Mechanical and thermal tool loads in dry diamond wire sawing of steel. In: Proceedings of 13 th international symposium “Conditioning of radioactive operational & decommissioning wastes”. Dresden, pp 324–330Google Scholar
  23. 23.
    Rowe WB (2014) Principles of modern grinding technology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Marinescu ID, Rowe WB, Dimitrov B, Ohmori H (2013) Tribology of abrasive machining processes, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Snoeys R, Peters J (1974) The significance of chip thickness in grinding. Annals of the CIRP 23(2):227–236Google Scholar
  26. 26.
    Denkena B, Grove T, Tatzig L (2016) A mechanical model of diamond wire sawing of steel structures. In: Advances in abrasive technology XIX, vol 874 of materials science forum, trans tech publications, pp 22–27.  https://doi.org/10.4028/www.scientific.net/MSF.874.22
  27. 27.
    Toenshoff HK, Denkena B (2013) Basics of cutting and abrasive processes. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Lierse T (1998) Mechanische und thermische Wirkungen beim Schleifen keramischer Werkstoffe, Dr.-Ing.-Dissertation, Universität HannoverGoogle Scholar
  29. 29.
    Heisel U, Klocke F, Uhlmann E, Spur G (2014) Handbuch spanen. Carl Hanser Verlag, MünchenGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine Tools (IFW)Leibniz Universität HannoverHannoverGermany

Personalised recommendations