Advertisement

Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing

  • Ghulam Moeen Uddin
  • Muhammad Jawad
  • Muhammad Ghufran
  • Muhammad Wajid Saleem
  • Mohsin Ali Raza
  • Zaeem Ur Rehman
  • Syed Muhammad Arafat
  • Muhammad Irfan
  • Bilal Waseem
ORIGINAL ARTICLE
  • 14 Downloads

Abstract

Tribological, mechanical, and chemical properties of the TiN coatings on Ti substrate were experimentally investigated for implant applications. X-ray diffraction (XRD) demonstrated that the principal crystal structure of TiN coating was (111) preferred orientation with FCC structure. Experimental evaluation was conducted at two substrate surface roughness, i.e., 0.1 μm and 0.4 μm. TiN coatings having 0.4-μm substrate surface roughness and approximately 3.3-μm coating thickness demonstrated optimum results of adhesion strength, hardness, coefficient of friction, wear rate, and corrosion rate in simulation body fluid (SBF). The selected TiN-coated sample exhibited maximum of 16.585 GPa hardness, 238.7 GPa elastic modulus, approximately 20 N adhesion, and 0.088 coefficient of friction. TiN coating showed approximately 8 times more corrosion resistance and 4 times more wear resistance than the bare titanium substrate. Energy dispersive spectroscopy (EDS) analysis of the wear tracks of TiN coating in SBF showed no presence of any harmful ingredients and confirmed its biocompatibility over the usage time in SBF. TiN-coated sample with higher substrate surface roughness (0.4 μm) demonstrated better tribo-mechanical properties and could reduce the cost of production than the conventionally used TiN-coated Ti implants of lower substrate surface roughness (0.1 μm).

Keywords

TiN coating Bio-tribology Implants manufacturing Wear resistance Titanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Higher Education Commission (HEC) Pakistan for partial funding this research.

References

  1. 1.
    Bauer S, Schmuki P, von der Mark K, Park J (2013) Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog Mater Sci 58(3):261–326.  https://doi.org/10.1016/j.pmatsci.2012.09.001 CrossRefGoogle Scholar
  2. 2.
    Soundrapandian C, Bharati S, Basu D, Datta S (2011) Studies on novel bioactive glasses and bioactive glass–nano-HAp composites suitable for coating on metallic implants. Ceram Int 37(3):759–769.  https://doi.org/10.1016/j.ceramint.2010.10.025 CrossRefGoogle Scholar
  3. 3.
    Munuera C, Matzelle TR, Kruse N, López MF, Gutiérrez A, Jiménez JA, Ocal C (2007) Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study. Acta Biomater 3(1):113–119.  https://doi.org/10.1016/j.actbio.2006.08.009 CrossRefGoogle Scholar
  4. 4.
    Met C, Vandenbulcke L, Sainte Catherine MC (2003) Friction and wear characteristics of various prosthetic materials sliding against smooth diamond-coated titanium alloy. Wear 255(7–12):1022–1029.  https://doi.org/10.1016/S0043-1648(03)00194-7 CrossRefGoogle Scholar
  5. 5.
    Dang C, Li J, Wang Y, Chen J (2016) Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating. Appl Surf Sci 386:224–233.  https://doi.org/10.1016/j.apsusc.2016.06.024 CrossRefGoogle Scholar
  6. 6.
    Longo G, Girasole M, Pompeo G, Cricenti A, Misiano C, Acclavio A et al (2010) Effect of titanium carbide coating by ion plating plasma-assisted deposition on osteoblast response: a chemical, morphological and gene expression investigation. Surf Coat Technol 204(16–17):2605–2612.  https://doi.org/10.1016/j.surfcoat.2010.02.007 CrossRefGoogle Scholar
  7. 7.
    Matusiewicz H (2014) Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles–a systematic analytical review. Acta Biomater 10(6):2379–2403.  https://doi.org/10.1016/j.actbio.2014.02.027 CrossRefGoogle Scholar
  8. 8.
    Mohedano M, Matykina E, Arrabal R, Pardo A, Merino MC (2014) Metal release from ceramic coatings for dental implants. Dent Mater 30(3):e28–e40.  https://doi.org/10.1016/j.dental.2013.12.011 CrossRefGoogle Scholar
  9. 9.
    Mary P, Bachy M, Mascard É, Gouin F (2015) Secondary orthopaedic complications after childhood tumors of the musculoskeletal system. Bull Cancer 102(7–8):593–601.  https://doi.org/10.1016/j.bulcan.2015.03.009 CrossRefGoogle Scholar
  10. 10.
    Gotman I, Gutmanas EY (2014) Titanium nitride-based coatings on implantable medical devices. Adv Biomater Devices Med 1(1).  https://doi.org/10.24411/2409-2568-2014-00007
  11. 11.
    Shi X, Xu L, Munar ML, Ishikawa K (2015) Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response. Mater Sci Eng C 49:1–6.  https://doi.org/10.1016/j.msec.2014.12.059 CrossRefGoogle Scholar
  12. 12.
    Dogan H, Findik F, Oztarhan A (2003) Comparative study of wear mechanism of surface treated AISI 316L stainless steel. Ind Lubr Tribol 55(2):76–83.  https://doi.org/10.1108/00368790310470903 CrossRefGoogle Scholar
  13. 13.
    Li J, Zheng H, Sinkovits T, Hee AC, Zhao Y (2015) Mono-and multiple TiN (/Ti) coating adhesion mechanism on a Ti–13Nb–13Zr alloy. Appl Surf Sci 355:502–508.  https://doi.org/10.1016/j.apsusc.2015.07.126 CrossRefGoogle Scholar
  14. 14.
    Datta S, Das M, Balla VK, Bodhak S, Murugesan VK (2018) Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surf Coat Technol 344:214–222.  https://doi.org/10.1016/j.surfcoat.2018.03.019 CrossRefGoogle Scholar
  15. 15.
    Subramanian B, Muraleedharan CV, Ananthakumar R, Jayachandran M (2011) A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf Coat Technol 205(21–22):5014–5020.  https://doi.org/10.1016/j.surfcoat.2011.05.004 CrossRefGoogle Scholar
  16. 16.
    Vadiraj A, Kamaraj M (2006) Characterization of fretting fatigue damage of PVD TiN coated biomedical titanium alloys. Surf Coat Technol 200(14–15):4538–4542.  https://doi.org/10.1016/j.surfcoat.2005.03.036 CrossRefGoogle Scholar
  17. 17.
    Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing, 2nd edn. William Andrew, (Elsevier) p 792Google Scholar
  18. 18.
    Kumar DD, Kaliaraj GS (2018) Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications. J Mech Behav Biomed Mater 77:106–115.  https://doi.org/10.1016/j.jmbbm.2017.09.007 CrossRefGoogle Scholar
  19. 19.
    Lin N, Huang X, Zhang X, Fan A, Qin L, Tang B (2012) In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating. Appl Surf Sci 258(18):7047–7051.  https://doi.org/10.1016/j.apsusc.2012.03.163 CrossRefGoogle Scholar
  20. 20.
    Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36.  https://doi.org/10.1016/S1044-5803(02)00192-4 CrossRefGoogle Scholar
  21. 21.
    Beegan D, Chowdhury S, Laugier MT (2007) Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf Coat Technol 201(12):5804–5808.  https://doi.org/10.1016/j.surfcoat.2006.10.031 CrossRefGoogle Scholar
  22. 22.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  23. 23.
    Bull SJ, Berasetegui EG (2006) An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 39(2):99–114.  https://doi.org/10.1016/j.triboint.2005.04.013 CrossRefGoogle Scholar
  24. 24.
    Mubarak A, Akhter P, Hamzah E, Mohd Toff MRH, Qazi IA (2008) Effect of coating thickness on the properties of TiN coatings deposited on tool steels using cathodic arc PVD technique. Surf Rev Lett 15(04):401–410.  https://doi.org/10.1142/S0218625X08011524 CrossRefGoogle Scholar
  25. 25.
    Ananthakumar R, Subramanian B, Kobayashi A, Jayachandran M (2012) Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings. Ceram Int 38(1):477–485.  https://doi.org/10.1016/j.ceramint.2011.07.030 CrossRefGoogle Scholar
  26. 26.
    Zhou ZF, Li KY, Bello I, Lee CS, Lee ST (2005) Study of tribological performance of ECR–CVD diamond-like carbon coatings on steel substrates: part 2. The analysis of wear mechanism. Wear 258(10):1589–1599.  https://doi.org/10.1016/j.wear.2004.10.005 CrossRefGoogle Scholar
  27. 27.
    Cui W, Qin G, Duan J, Wang H (2017) A graded nano-TiN coating on biomedical Ti alloy: low friction coefficient, good bonding and biocompatibility. Mater Sci Eng C 71:520–528.  https://doi.org/10.1016/j.msec.2016.10.033 CrossRefGoogle Scholar
  28. 28.
    Subramanian B, Dhandapani P, Maruthamuthu S, Jayachandran M (2012) Biosynthesis of calcium hydroxylapatite coating on sputtered Ti/TiN nano multilayers and their corrosion behavior in simulated body solution. J Biomater Appl 26(6):687–705.  https://doi.org/10.1177/0885328210377534 CrossRefGoogle Scholar
  29. 29.
    Braic M, Braic V, Balaceanu M, Pavelescu G, Vladescu A, Tudor I, Popescu A, Borsos Z, Logofatu C, Negrila CC (2005) Microchemical and mechanical characteristics of arc plasma deposited TiAlN and TiN/TiAlN coatings. J Optoelectron Adv Mater 7:671–676Google Scholar
  30. 30.
    Liang J, Srinivasan PB, Blawert C, Störmer M, Dietzel W (2009) Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes. Electrochim Acta 54(14):3842–3850.  https://doi.org/10.1016/j.electacta.2009.02.004 CrossRefGoogle Scholar
  31. 31.
    Paskvale S (2007) Properties of PVD hard coatings. Dissertation, University of LjubljanaGoogle Scholar
  32. 32.
    Sasabayashi T, Ito N, Nishimura E, Kon M, Song PK, Utsumi K et al (2003) Comparative study on structure and internal stress in tin-doped indium oxide and indium-zinc oxide films deposited by rf magnetron sputtering. Thin Solid Films 445(2):219–223.  https://doi.org/10.1016/j.tsf.2003.08.047 CrossRefGoogle Scholar
  33. 33.
    Chen CT, Song YC, Yu GP, Huang JH (1998) Microstructure and hardness of hollow cathode discharge ion-plated titanium nitride film. J Mater Eng Perform 7(3):324–328.  https://doi.org/10.1361/105994998770347756 CrossRefGoogle Scholar
  34. 34.
    Zhang L, Yang H, Pang X, Gao K, Volinsky AA (2013) Microstructure, residual stress, and fracture of sputtered TiN films. Surf Coat Technol 224:120–125.  https://doi.org/10.1016/j.surfcoat.2013.03.009 CrossRefGoogle Scholar
  35. 35.
    Yanfeng W, Zhengxian L, Haonan W, Jihong D, Changwei Z (2017) Effect of multilayered structure on properties of Ti/TiN coating. Rare Metal Mater Eng 46(5):1219–1224.  https://doi.org/10.1016/S1875-5372(17)30140-6 CrossRefGoogle Scholar
  36. 36.
    Beake BD, Ogwu AA, Wagner T (2006) Influence of experimental factors and film thickness on the measured critical load in the nanoscratch test. Mater Sci Eng A 423(1–2):70–73.  https://doi.org/10.1016/j.msea.2005.09.121 CrossRefGoogle Scholar
  37. 37.
    Pizzi A, Mittal KL (2017) Handbook of adhesive technology, 3rd edn. CRC press CRC Press, (Taylor & Francis group) p 644Google Scholar
  38. 38.
    Ming'e W, Guojia M, Xing L, Chuang D (2016) Morphology and mechanical properties of TiN coatings prepared with different PVD methods. Rare Metal Mater Eng 45(12):3080–3084.  https://doi.org/10.1016/S1875-5372(17)30057-7 CrossRefGoogle Scholar
  39. 39.
    Viana R, Machado AR (2009) Influence of adhesion between coating and substrate on the performance of coated HSS twist drills. J Braz Soc Mech Sci Eng 31(4):327–332  https://doi.org/10.1590/S1678-58782009000400007 CrossRefGoogle Scholar
  40. 40.
    Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2):1–11.  https://doi.org/10.1016/S0043-1648(00)00488-9 CrossRefGoogle Scholar
  41. 41.
    Kuzumaki T, Ujiie O, Ichinose H, Ito K (2000) Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv Eng Mater 2(7):416–418.  https://doi.org/10.1002/1527-2648(200007)2:7<416::AID-ADEM416>3.0.CO;2-Y CrossRefGoogle Scholar
  42. 42.
    Piscanec S, Ciacchi LC, Vesselli E, Comelli G, Sbaizero O, Meriani S, De Vita A (2004) Bioactivity of TiN-coated titanium implants. Acta Mater 52(5):1237–1245.  https://doi.org/10.1016/j.actamat.2003.11.020 CrossRefGoogle Scholar
  43. 43.
    Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24(6–8):745–752.  https://doi.org/10.1016/j.msec.2004.08.018 CrossRefGoogle Scholar
  44. 44.
    Serro AP, Completo C, Colaço R, Dos Santos F, Da Silva CL, Cabral JMS et al (2009) A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surf Coat Technol 203(24):3701–3707.  https://doi.org/10.1016/j.surfcoat.2009.06.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Ghulam Moeen Uddin
    • 1
  • Muhammad Jawad
    • 1
  • Muhammad Ghufran
    • 1
  • Muhammad Wajid Saleem
    • 1
  • Mohsin Ali Raza
    • 2
  • Zaeem Ur Rehman
    • 2
  • Syed Muhammad Arafat
    • 1
  • Muhammad Irfan
    • 3
  • Bilal Waseem
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Engineering & TechnologyLahorePakistan
  2. 2.Department of Metallurgy and Materials Engineering, CEETUniversity of the PunjabLahorePakistan
  3. 3.PITMAEM, PCSIR Laboratories ComplexLahorePakistan

Personalised recommendations