Ultra-precision diamond turning of optical silicon—a review

  • Lukman N. Abdulkadir
  • Khaled Abou-El-Hossein
  • Abubakar I. Jumare
  • Peter B. Odedeyi
  • Muhammad M. Liman
  • Tirimisiyu A. Olaniyan
ORIGINAL ARTICLE
  • 187 Downloads

Abstract

In traditional approach of silicon optical lens production, grinding, lapping, and polishing are employed. Success of these steps depends on the quality of the preceding ones; therefore, use of precision grinding is becoming an unwise decision during manufacturing of optical lenses with complicated surfaces. Owing to this, an alternate manufacturing approach for producing silicon optical component was sought. Ultra-precision diamond turning using a single-crystal diamond tool with a high negative rake angle while maintaining a cutting regime in the ductile mode is now widely used as the alternate approach. However, depending on view point, machinability in ultra-precision machining may be in terms of tool wear rate, hardness, chip shape, surface roughness, and other benchmarks. Therefore, determining proper machining conditions, such as tool geometry and processing parameters, is crucial in achieving the required surface finish and optical form accuracy. In determining the optimal process parameter settings in silicon diamond turning, numerous process trials are generally required to evaluate the most favorable machining variables and their interactions. To improve the machinability of silicon, this review article presents an overview of the previous research on the effects of both machining parameters and tool geometry to optical silicon machinability. This is aimed at facilitating adequate understanding of the deformation, fracture, surface quality, and microstructural changes of both silicon and diamond to ease attainable product quality, utility, and quality cost.

Keywords

Ultra-high precision single-point diamond turning Optical silicon Diamond tool geometry Plastic deformation Size effect Crystallographic orientation Surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    van Houten F (2005) Philips man predicts death of light bulbs as LEDs win. The InquirerGoogle Scholar
  2. 2.
    Nina Turner MM, Dugar A, Palma MJ, Rau S, Santiago L, Kim S-K (2015) Worldwide Semiconductor 2015–2019 Forecast. [Retrieved: 7th June, 2016]. https://www.idc.com/getdoc.jsp?containerId=254548
  3. 3.
    Freedonia.Market.Research. "World Machine Tools 2016.," 2016. Available from: https://www.freedoniagroup.com/industry-study/world-machine-tools-3373.htm
  4. 4.
    Dumas D, Fendler M, Berger F, Cloix B, Pornin C, Baier N et al (2012) Infrared camera based on a curved retina. Opt Lett 37(4):653–655CrossRefGoogle Scholar
  5. 5.
    Fang Z and Zhao CZ (2012) Recent progress in silicon photonics: a review. ISRN OpticsGoogle Scholar
  6. 6.
    Suleski TJ, Davies MA and Dutterer BS (2012) Diamond machining of freeform infrared optics. in Optical Fabrication and Testing: OW2D. 4Google Scholar
  7. 7.
    Zhong ZW (2002) Surface finish of precision machined advanced materials. J Mater Process Technol 122(2–3):173–178CrossRefGoogle Scholar
  8. 8.
    Abou-El-Hossein K (2013) Quality of silicon convex lenses fabricated by ultra-high precision diamond machining. S Afr J Ind Eng 24(1):91–97Google Scholar
  9. 9.
    Yan J, Yoshino M, Kuriagawa T, Shirakashi T, Syoji K, Komanduri R (2001) On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications. Mater Sci Eng A 297(1–2):230–234CrossRefGoogle Scholar
  10. 10.
    Yan J, Syoji K, Kuriyagawa T, Suzuki H (2002) Ductile regime turning at large tool feed. J Mater Process Technol 121(2):363–372CrossRefGoogle Scholar
  11. 11.
    Zhang SJ, To, S, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95CrossRefGoogle Scholar
  12. 12.
    Zhang S, To, S, Zhu Z, Zhang G (2016) A review of fly cutting applied to surface generation in ultra-precision machining. Int J Mach Tools Manuf 103:13–27CrossRefGoogle Scholar
  13. 13.
    Otieno T, Abou-El-Hossein K, Hsu W, Cheng Y and Mkoko Z (2015) Surface roughness when diamond turning RSA 905 optical aluminium. SPIE Opt Eng Appl 957509–957509-6Google Scholar
  14. 14.
    Olufayo O, Abou-El-Hossein K, Kadernani M (2014) Tribo-electric charging in the ultra-high precision machining of contact lens polymers. Procedia Mater Sci 6:194–201CrossRefGoogle Scholar
  15. 15.
    Ravindra D and Patten J (2011) Ductile regime material removal of silicon carbide (SIC). Nova Science Publishers, IncGoogle Scholar
  16. 16.
    Zhong Z (2003) Ductile or partial ductile mode machining of brittle materials. Int J Adv Manuf Technol 21(8):579–585CrossRefGoogle Scholar
  17. 17.
    Riemer O (2011) Advances in ultra precision manufacturing. Proc Jpn Soc Precis EngGoogle Scholar
  18. 18.
    Jumare AI, Abou-El-Hossein K, Abdulkadir L (2017) Review of ultra-high precision diamond turning of silicon for infrared optics. PONTE Int Sci Res J 73(11):58–123Google Scholar
  19. 19.
    Beckstette K (2008) Trends in asphere and freeform optics. In Proc of Optonet WorkshopGoogle Scholar
  20. 20.
    Olufayo O and Abou-El-Hossein K (2013) Preliminary investigation of surface finish of a contact lens polymer in ultra-high precision diamond turning. In Robotics and Mechatronics Conference (RobMech), 2013 6th, pp 117–122Google Scholar
  21. 21.
    Liman MM, Abou-El-Hossein K, Jumare AI, Odedeyi PB and Lukman AN (2017) Modelling of surface roughness in ultra-high precision turning of an RGP contact lens polymer. In Key Engineering Materials, pp 183–187Google Scholar
  22. 22.
    Faehnle O, Doetz M, Dambon O (2017) Analysis of critical process parameters of ductile mode grinding of brittle materials. Adv Opt Technol 6(5):349–358Google Scholar
  23. 23.
    Worldwide EO (2017) The correct material for infrared (IR) applications. EO Edmund optics worldwide. [Retrieved: 11/30/2017]. Available from: https://www.edmundoptics.com/resources/application-notes/optics/the-correct-material-for-infrared-applications/
  24. 24.
    Tosi JL, Khajurivala KM (2016) Common infrared optical materials and coatings: a guide to properties, performance and applications [Online]. Janos Technol LLC, [Retrieved: 15/04 2016]. https://www.photonics.com/a25495/Common_Infrared_Optical_Materials_and_Coatings_A
  25. 25.
    Saayman M (2017) Materials for infrared optics, OPTI 521 Tutorial [Online]. [Retrieved: 3/12/2017]. https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Saayman-521-Tutorial.pdf
  26. 26.
    Topsil, Ed (2013) High transmission silicon (HiTranTM) for infraredGoogle Scholar
  27. 27.
    Yan J, Asami T, Harada H, Kuriyagawa T (2012) Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann Manuf Technol 61(1):131–134CrossRefGoogle Scholar
  28. 28.
    Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2(3):96–102CrossRefGoogle Scholar
  29. 29.
    Kobaru Y, Kondo E and Iwamoto R (2012) Ultra-precision cutting of single crystal silicon using diamond tool with large top corner radius. In Key Eng Mater pp 81–86Google Scholar
  30. 30.
    Olufayo OA, Abou-El-Hossein K (2013) Molecular dynamics modeling of nanoscale machining of silicon. Procedia CIRP 8:504–509CrossRefGoogle Scholar
  31. 31.
    Wang M, Wang B, Zheng Y (2015) Weakening of the anisotropy of surface roughness in ultra-precision turning of single-crystal silicon. Chin J Aeronaut 28(4):1273–1280CrossRefGoogle Scholar
  32. 32.
    Azami S, Kudo H, Mizumoto Y, Tanabe T, Yan J, Kakinuma Y (2015) Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride. Precis Eng 40:172–181CrossRefGoogle Scholar
  33. 33.
    Weck M and Fischer S (1999) Manufacturing of microstructured surfaces using ultraprecision turning, milling and shaping. In Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology. pp 420–423Google Scholar
  34. 34.
    High purity silicon for optical applications. In Optical silicon Whitepaper, ed. 516 E Tamarack St. Bozeman, MT 59718: Lattice Materials, 2014Google Scholar
  35. 35.
    Neutron Interferometry (2017) A short Excursion into Crystallography [Online]. [Retrieved: 3/12/2017]. http://www.neutroninterferometry.com/research-overview/interferometry/a-short-excursion-into-crystallography
  36. 36.
    Ayomoh M and Abou-El-Hossein K (2015) Surface finish in ultra-precision diamond turning of single-crystal silicon. In Optifab 2015, pp 96331IGoogle Scholar
  37. 37.
    Wan Y, Cheng K, Liu Z, Ye H (2013) An investigation on machinability assessment of difficult-to-cut materials based on radar charts. Proc Inst Mech Eng B J Eng Manuf 227(12):1916–1920CrossRefGoogle Scholar
  38. 38.
    Goel S, Luo XC, Agrawal A, Reuben RL (Jan 2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164CrossRefGoogle Scholar
  39. 39.
    Senapati AK and Brata Mohanty S (2014) A review on the effect of process parameters on different output parameters during machining of several materials. Int J Eng Sci Res Technol 3(3)Google Scholar
  40. 40.
    To SS, Wang VH and Lee WB (2018) Machinability of single crystals in diamond turning. In Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning, ed, Springer, pp 43–69Google Scholar
  41. 41.
    Davim JP (2014) Machinability of advanced materials. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  42. 42.
    Arif M, Xinquan Z, Rahman M, Kumar S (2013) A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials. Int J Mach Tools Manuf 64:114–122CrossRefGoogle Scholar
  43. 43.
    Wu X, Li L, He N, Yao C, Zhao M (2016) Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting. Precis Eng 45:359–364CrossRefGoogle Scholar
  44. 44.
    Zhang G, Guo C (2015) Modeling of cutting force distribution on tool edge in turning process. Procedia Manuf 1:454–465CrossRefGoogle Scholar
  45. 45.
    Rigatti AMY, de Assis CLF, Coelho RT, Jasinevicius RG and Rodrigues AR (2013) Computational method for calculation of the specific cutting energy. In International Congress of Mechanical Engineering, pp 2710–2715Google Scholar
  46. 46.
    Morris JC, Callahan DL (1994) Origins of microplasticity in low-load scratching of silicon. J Mater Res 9(11):2907–2913CrossRefGoogle Scholar
  47. 47.
    Zhang L, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211(1):44–53CrossRefGoogle Scholar
  48. 48.
    Zhu Z, To, S, Xiao G, Ehmann KF, Zhang G (2016) Rotary spatial vibration-assisted diamond cutting of brittle materials. Precis Eng 44:211–219CrossRefGoogle Scholar
  49. 49.
    Neo WK, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63(5):465–480CrossRefGoogle Scholar
  50. 50.
    Arif M, Rahman M, San WY (2012) A study on the effect of tool-edge radius on critical machining characteristics in ultra-precision milling of tungsten carbide. Int J Adv Manuf Technol 67(5–8):1257–1265Google Scholar
  51. 51.
    Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478CrossRefGoogle Scholar
  52. 52.
    Lawn B, Jensen T, Arora A (1976) Brittleness as an indentation size effect. J Mater Sci 11(3):573–575CrossRefGoogle Scholar
  53. 53.
    Marshall DB and Lawn BR (1985) Indentation of brittle materials. In Microindentation Techniques in Materials Science and Engineering, ed: ASTM InternationalGoogle Scholar
  54. 54.
    Lawn BR, Evans A, Marshall D (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63(9–10):574–581CrossRefGoogle Scholar
  55. 55.
    Rigatti A, Assis C, Rodrigues A and Jasinevicius R (2013) Material removal mechanism and cutting energy analysis at tool cutting edge scale in end milling. In 13th euspen International Conference, Berlin, pp 1–4Google Scholar
  56. 56.
    Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113(2):184–189CrossRefGoogle Scholar
  57. 57.
    Fang F, Liu B, Xu Z (2015) Nanometric cutting in a scanning electron microscope. Precis Eng 41:145–152CrossRefGoogle Scholar
  58. 58.
    Mir A, Luo X, Sun J (2016) The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon. Wear 364:233–243CrossRefGoogle Scholar
  59. 59.
    Patel MT and Deshpande VA (2014) Optimization of machining parameters for turning different alloy steels using CNC. Int J Innov Res Sci Eng Technol 3(2)Google Scholar
  60. 60.
    Cai MB, Li XP, Rahman M (Jan 2007) Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation. Int J Mach Tool Manu 47(1):75–80CrossRefGoogle Scholar
  61. 61.
    Cai MB, Li XP, Rahman M, Tay AAO (2007) Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon. Int J Mach Tools Manuf 47(3–4):562–569CrossRefGoogle Scholar
  62. 62.
    Blake PN, Scattergood RO (1990) Ductile-regime machining of germanium and silicon. J Am Ceram Soc 73(4):949–957CrossRefGoogle Scholar
  63. 63.
    Puttick KE, Rudman MR, Smith KJ, Franks A & Lindsey K (1989) Single-point diamond machining of glasses. Proc R Soc Lond A Math Phys Sci 426(1870)Google Scholar
  64. 64.
    Marsh ER, Sommer EJ, Deakyne TRS, Kim GA, Simonson JA (2010) Detection of orientation-dependent, single-crystal diamond tool edge wear using cutting force sensors, while spin-turning silicon. Precis Eng 34(2):253–258CrossRefGoogle Scholar
  65. 65.
    Obata K (2016) Single-crystal diamond cutting tool for ultra-precision processing. Sei Tech Rev 82:83Google Scholar
  66. 66.
    Mabrouki T, Courbon C, Zhang Y, Rech J, Nélias D, Asad M et al (2016) Some insights on the modelling of chip formation and its morphology during metal cutting operations. Comptes Rendus Mecanique 344(4):335–354CrossRefGoogle Scholar
  67. 67.
    Jain L, Bajpai R, Basu R, Misra DS, Samajdar I (2017) Delamination/rupture of polycrystalline diamond film: defining role of shear anisotropy. Cryst Growth Des 17(4):1514–1523CrossRefGoogle Scholar
  68. 68.
    Blake PN and Scattergood RO (1989) Ductile-regime turning of germanium and siliconGoogle Scholar
  69. 69.
    Blackley W, Scattergood RO (1991) Ductile-regime machining model for diamond turning of brittle materials. Precis Eng 13(2):95–103CrossRefGoogle Scholar
  70. 70.
    Fang F, Chen L (2000) Ultra-precision cutting for ZKN7 glass. CIRP Ann Manuf Technol 49(1):17–20CrossRefGoogle Scholar
  71. 71.
    Gogotsi Y, Kailer A, Nickel K (1997) Phase transformations in materials studied by micro-Raman spectroscopy of indentations. Mater Res Innov 1(1):3–9CrossRefGoogle Scholar
  72. 72.
    Gilman JJ (1993) Shear-induced metallization. Philos Mag B 67(2):207–214CrossRefGoogle Scholar
  73. 73.
    Arefin S, Li XP, Rahman M, Liu K (2006) The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer. Int J Adv Manuf Technol 31(7–8):655–662CrossRefGoogle Scholar
  74. 74.
    Fang F, Zhang G (2003) An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Technol 22(9):703–707CrossRefGoogle Scholar
  75. 75.
    Jasinevicius RG, dos Santos FJ, Pizani PS, Duduch JG, Porto AJV (2000) Surface amorphization in diamond turning of silicon crystal investigated by transmission electron microscopy. J Non-Cryst Solids 272(2–3):174–178CrossRefGoogle Scholar
  76. 76.
    Tauhiduzzaman M, Veldhuis SC (2014) Effect of material microstructure and tool geometry on surface generation in single point diamond turning. Precis Eng 38(3):481–491CrossRefGoogle Scholar
  77. 77.
    Liu K, Melkote SN (2006) Material strengthening mechanisms and their contribution to size effect in micro-cutting. J Manuf Sci Eng 128(3):730–738CrossRefGoogle Scholar
  78. 78.
    Backer W, Marshall E, Shaw M (1952) The size effect in metal cutting. Trans Asme 74(1):61Google Scholar
  79. 79.
    Kopalinsky E, Oxley P (1984) Size effects in metal removal processes. Mech Properties High Rates Strain:389–396Google Scholar
  80. 80.
    Marusich TD (2001) Effects of friction and cutting speed on cutting force. In Proceedings of ASME Congress, pp 11–16Google Scholar
  81. 81.
    Larsen-Basse J and Oxley P (1973) Effect of strain-rate sensitivity on scale phenomena in chip formation. In Proceedings of the Thirteenth International Machine Tool Design and Research Conference, pp 209–216Google Scholar
  82. 82.
    Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—part II: analysis of the size effect and the shear strain-rate. J Mech Phys Solids 51(4):743–762MATHCrossRefGoogle Scholar
  83. 83.
    Dinesh D, Swaminathan S, Chandrasekar S, and Farris T (2001) An intrinsic size effect in machining due to the strain gradient. In Proceedings of ASME IMECE, pp 197–204Google Scholar
  84. 84.
    Nakayama K, Tamura K (1968) Size effect in metal-cutting force. J Eng Ind 90(1):119–126CrossRefGoogle Scholar
  85. 85.
    Armarego E, Brown R (1961) On the size effect in metal cutting. Int J Prod Res 1(3):75–99CrossRefGoogle Scholar
  86. 86.
    Atkins A (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45(2):373–396CrossRefGoogle Scholar
  87. 87.
    Zong W, Cao Z, He C, Sun T (2015) Critical undeformed chip thickness of brittle materials in single point diamond turning. Int J Adv Manuf Technol 81(5–8):975–984CrossRefGoogle Scholar
  88. 88.
    Roy S, Davim JP and Kumar K (2017) Optimization of process parameters using Taguchi coupled genetic algorithm: machining in CNC lathe. In Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics, ed, IGI Global, pp 67–93Google Scholar
  89. 89.
    Goel S, Luo X, Comley P, Reuben RL, Cox A (2013) Brittle–ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tools Manuf 65:15–21CrossRefGoogle Scholar
  90. 90.
    Saito TT (1975) Machining of optics: an introduction. Appl Opt 14(8):1773–1776CrossRefGoogle Scholar
  91. 91.
    Barman M, Mukherjee S (2015) Optimization of process parameters of tool wear in turning operation. Int J Eng Res Appl 5(4):19–23Google Scholar
  92. 92.
    Goel S (2014) The current understanding on the diamond machining of silicon carbide. J Phys D-Appl Phys 47(24)Google Scholar
  93. 93.
    Bolat M (2013) Machining of polycarbonate for optical applications. Middle East Technical UniversityGoogle Scholar
  94. 94.
    Jiang XJ, Shore P, McKeown P, Whitehouse DJ, Ruffles PC (1973) Ultra-precision engineering: from physics to manufacturing. Philos Trans R Soc Lond A 2012(370):3831–3834Google Scholar
  95. 95.
    Yergök Ç (2010) Rough cutting of germanium with polycrystalline diamond tools. Master of Science Thesis, Mechanical Engineering Department, Middle East Technical University, AnkaraGoogle Scholar
  96. 96.
    Luo X, Goel S, Reuben RL (2012) A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide. J Eur Ceram Soc 32(12):3423–3434CrossRefGoogle Scholar
  97. 97.
    Rhorer RL and Evans CJ (1995) Fabrication of optics by diamond turning. Handbook of optics. 1 41.1–41.3Google Scholar
  98. 98.
    Morris JC, Callahan DL, Kulik J, Patten JA, Scattergood RO (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020CrossRefGoogle Scholar
  99. 99.
    Gerbig YB, Michaels CA, Cook RF (2015) In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films. J Mater Res 30(3):390–406CrossRefGoogle Scholar
  100. 100.
    Yan J, Asami T, Harada H, Kuriyagawa T (Oct 2009) Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining. Precis Eng 33(4):378–386CrossRefGoogle Scholar
  101. 101.
    Cahn RW (1992) Metallic solid silicon. Nature 357:645–646CrossRefGoogle Scholar
  102. 102.
    Cheong W, Zhang L (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11(3):173CrossRefGoogle Scholar
  103. 103.
    Kim D, Oh S (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17(9):2259CrossRefGoogle Scholar
  104. 104.
    Huang H, Yan J (2015) New insights into phase transformations in single crystal silicon by controlled cyclic nanoindentation. Scr Mater 102:35–38CrossRefGoogle Scholar
  105. 105.
    Kovalchenko A, Gogotsi Y, Domnich V, Erdemir A (2002) Phase transformations in silicon under dry and lubricated sliding. Tribol Trans 45(3):372–380CrossRefGoogle Scholar
  106. 106.
    Goel S (2013) An atomistic investigation on the nanometric cutting mechanism of hard, brittle materials. Heriot-Watt University, EdinburghGoogle Scholar
  107. 107.
    Zhao S, Hahn E, Kad B, Remington B, Wehrenberg C, Bringa E et al (2016) Amorphization and nanocrystallization of silicon under shock compression. Acta Mater 103:519–533CrossRefGoogle Scholar
  108. 108.
    Wang Y, Ruffell S, Sears K, Knights AP, Bradby J and Williams J (2010) Electrical properties of Si-XII and Si-III formed by nanoindentation. In Optoelectronic and Microelectronic Materials and Devices (COMMAD). Conference on, 2010, pp 105–106Google Scholar
  109. 109.
    Mylvaganam K, Zhang L, Eyben P, Mody J, Vandervorst W (2009) Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20(30):305–705CrossRefGoogle Scholar
  110. 110.
    Zhao S, Kad B, Hahn E, Remington B, Wehrenberg C, Huntington C et al (2015) Pressure and shear-induced amorphization of silicon. Extreme Mech Lett 5:74–80CrossRefGoogle Scholar
  111. 111.
    Jardret V, Zahouani H, Loubet J-L, Mathia T (1998) Understanding and quantification of elastic and plastic deformation during a scratch test. Wear 218(1):8–14CrossRefGoogle Scholar
  112. 112.
    Gogotsi Y, Zhou G, Ku S-S, Cetinkunt S (2001) Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond Sci Technol 16(5):345CrossRefGoogle Scholar
  113. 113.
    Goel S, Luo X, Reuben RL, Pen H (2012) Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear 284-285:65–72CrossRefGoogle Scholar
  114. 114.
    Gerbig Y, Stranick S, Morris D, Vaudin M, Cook R (2009) Effect of crystallographic orientation on phase transformations during indentation of silicon. J Mater Res 24(03):1172–1183CrossRefGoogle Scholar
  115. 115.
    Tanaka H, Shimada S, Anthony L (2007) Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation. CIRP Ann Manuf Technol 56(1):53–56CrossRefGoogle Scholar
  116. 116.
    Kovalchenko A, Milman YV (2014) On the cracks self-healing mechanism at ductile mode cutting of silicon. Tribol Int 80:166–171CrossRefGoogle Scholar
  117. 117.
    Cai M, Li X, Rahman M (2007) High-pressure phase transformation as the mechanism of ductile chip formation in nanoscale cutting of silicon wafer. Proc Inst Mech Eng B J Eng Manuf 221(10):1511–1519CrossRefGoogle Scholar
  118. 118.
    Jasinevicius RG, Pizani PS, Duduch JG (2000) Brittle to ductile transition dependence upon the transition pressure value of semiconductors in micromachining. J Mater Res 15(08):1688–1692CrossRefGoogle Scholar
  119. 119.
    Wang M, Wang W, Lu Z (2012) Critical cutting thickness in ultra-precision machining of single crystal silicon. Int J Adv Manuf Technol 65(5–8):843–851Google Scholar
  120. 120.
    O’Connor BP, Marsh ER, Couey JA (2005) On the effect of crystallographic orientation on ductile material removal in silicon. Precis Eng 29(1):124–132CrossRefGoogle Scholar
  121. 121.
    Moronuki N, Liang Y, Furukawa Y (1994) Experiments on the effect of material properties on microcutting processes. Precis Eng 16(2):124–131CrossRefGoogle Scholar
  122. 122.
    Jasinevicius R, Duduch JG, Pizani P (2008) The influence of crystallographic orientation on the generation of multiple structural phases generation in silicon by cyclic microindentation. Mater Lett 62(6):812–815CrossRefGoogle Scholar
  123. 123.
    Gupta MC, Ruoff AL (1980) Static compression of silicon in the [100] and in the [111] directions. J Appl Phys 51(2):1072–1075CrossRefGoogle Scholar
  124. 124.
    Cheung C (2003) Influence of cutting friction on anisotropy of surface properties in ultra-precision machining of brittle single crystals. Scr Mater 48(8):1213–1218CrossRefGoogle Scholar
  125. 125.
    Jasinevicius RG, Duduch JG, Montanari L, Pizani PS (2011) Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon. Proc Inst Mech Eng B J Eng Manuf 226(3):445–458CrossRefGoogle Scholar
  126. 126.
    Hung N, Fu Y (2000) Effect of crystalline orientation in the ductile-regime machining of silicon. Int J Adv Manuf Technol 16(12):871–876CrossRefGoogle Scholar
  127. 127.
    Wang M, Wang W, Lu Z (2012) Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study. Int J Adv Manuf Technol 60(5–8):473–485Google Scholar
  128. 128.
    Shibata T, Fujii S, Makino E, Ikeda M (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18(2):129–137CrossRefGoogle Scholar
  129. 129.
    Ikehara T and Tsuchiya T (2016) Crystal orientation-dependent fatigue characteristics in micrometer-sized single-crystal silicon. Microsyst Nanoeng 2Google Scholar
  130. 130.
    Chavoshi SZ, Luo X (2016) An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures. Comput Mater Sci 113:1–10CrossRefGoogle Scholar
  131. 131.
    Element Six L (2014) Diamond tool materials for metalworking [online]. [Retrieved: 3/12/2017]Google Scholar
  132. 132.
    Fulemova J, Janda Z (2014) Influence of the cutting edge radius and the cutting edge preparation on tool life and cutting forces at inserts with wiper geometry. Procedia Eng 69:565–573CrossRefGoogle Scholar
  133. 133.
    Zhou YH (2017) The application and performance of diamond and PCBN tools in difficult-to-cut materials. In Solid State Phenomena, pp 90–96Google Scholar
  134. 134.
    Wang J, Wan L, Chen J, Yan J (2017) Micropatterning of diamond crystallites via cobalt-catalyzed thermochemical etching. J Mater Sci 52(2):709–720CrossRefGoogle Scholar
  135. 135.
    Denkena B, Lucas A, Bassett E (2011) Effects of the cutting edge microgeometry on tool wear and its thermo-mechanical load. CIRP Ann Manuf Technol 60(1):73–76CrossRefGoogle Scholar
  136. 136.
    Zong W, Li Z, Sun T, Cheng K, Li D, Dong S (2010) The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. Int J Mach Tools Manuf 50(4):411–419CrossRefGoogle Scholar
  137. 137.
    Nassau K, Nassau J (1979) The history and present status of synthetic diamond. J Cryst Growth 46(2):157–172CrossRefGoogle Scholar
  138. 138.
    John P, Polwart N, Troupe C, Wilson J (2002) The oxidation of (100) textured diamond. Diam Relat Mater 11(3):861–866CrossRefGoogle Scholar
  139. 139.
    Wang Z, Dong L, Wang D, Dong Y (2012) Study of HPHT single crystal diamond as precision cutting tool material. Precis Eng 36(1):162–167CrossRefGoogle Scholar
  140. 140.
    Kumar MP, Ramakrishna N, Amarnath K, Kumar MS, Kumar MP, Ramakrishna N et al (2015) Study on tool life and its failure mechanisms. Int J 2:126–131MATHGoogle Scholar
  141. 141.
    Zhang Z, Yan J, Kuriyagawa T (2011) Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide. Int J Adv Manuf Technol 57(1–4):117–125CrossRefGoogle Scholar
  142. 142.
    Yuan Z, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62(4):327–330CrossRefGoogle Scholar
  143. 143.
    Li XP, Rahman M, Liu K, Neo KS, Chan CC (2003) Nano-precision measurement of diamond tool edge radius for wafer fabrication. J Mater Process Technol 140(1–3):358–362CrossRefGoogle Scholar
  144. 144.
    Asai S, Taguchi Y, Kasai T, Kobayashi A (1990) Measurement on cutting edge radius of single point diamond tools with newly developed SEM. Science and Technology of New Diamond, KTK Sci. Pub, Tokoyo, pp 389–393Google Scholar
  145. 145.
    Drescher J, Dow T (1990) Tool force model development for diamond turning. Precis Eng 12(1):29–35CrossRefGoogle Scholar
  146. 146.
    Shaw MC (2005) Metal cutting principles vol. 2. Oxford university press, New YorkGoogle Scholar
  147. 147.
    Venkatachalam S, Li X, Liang SY (2009) Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials. J Mater Process Technol 209(7):3306–3319CrossRefGoogle Scholar
  148. 148.
    Arefin S, Li X, Cai M, Rahman M, Liu K, Tay A (2007) The effect of the cutting edge radius on a machined surface in the nanoscale ductile mode cutting of silicon wafer. Proc Inst Mech Eng B J Eng Manuf 221(2):213–220CrossRefGoogle Scholar
  149. 149.
    Breeding CM, Shigley JE (2009) The “type” classification system of diamonds and its importance in gemology. Gems Gemol 45(2):96–111CrossRefGoogle Scholar
  150. 150.
    Tan Y, Yang D, Sheng Y (2009) Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J Eur Ceram Soc 29(6):1029–1037CrossRefGoogle Scholar
  151. 151.
    Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443CrossRefGoogle Scholar
  152. 152.
    Wong C (1981) Fracture and wear of diamond cutting tools. J Eng Mater Technol 103(4):341–345CrossRefGoogle Scholar
  153. 153.
    Ikawa N, Shimada S, Tsuwa H (1985) Non-destructive strength evaluation of diamond for ultra-precision cutting tool. CIRP Ann Manuf Technol 34(1):117–120CrossRefGoogle Scholar
  154. 154.
    Zong WJ, Li ZQ, Zhang L, Liang YC, Sun T, An CH et al (2013) Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals. Int J Adv Manuf Technol 68(9–12):1927–1936CrossRefGoogle Scholar
  155. 155.
    Denkena B, Reichstein M, Brodehl J and de León García L (2005) Surface preparation, coating and wear performance of geometrically defined cutting edges. In Proceedings of the 5th international conference the coatings in manufacturing engineering, pp 5–7Google Scholar
  156. 156.
    Nalbant M, Altin A, Gokkaya H (2007) The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Mater Des 28(4):1334–1338CrossRefGoogle Scholar
  157. 157.
    Hughes J, Sharman A, Ridgway K (2006) The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity. Proc Inst Mech Eng B J Eng Manuf 220(2):93–107CrossRefGoogle Scholar
  158. 158.
    Rodríguez CJC (2009) Cutting edge preparation of precision cutting tools by applying micro-abrasive jet machining and brushing. Kassel University press GmbH, KasselGoogle Scholar
  159. 159.
    Kandráč L, Maňková I and Vrabel M (2013) Cutting edge preparation in machining processes. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika 85(288), nr 2: 149-159Google Scholar
  160. 160.
    Kim KW, Lee WY, Sin HC (1999) A finite-element analysis of machining with the tool edge considered. J Mater Process Technol 86(1):45–55Google Scholar
  161. 161.
    Yang N, Zong W, Wu D, Li Z, Sun T (2017) A study of the ultra-precision truing method for flank face of round nose diamond cutting tool. J Manuf Process 30:124–132CrossRefGoogle Scholar
  162. 162.
    Komanduri R, Chandrasekaran N, Raff L (2000) Molecular dynamics simulation of atomic-scale friction. Phys Rev B 61(20):14007CrossRefGoogle Scholar
  163. 163.
    Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195(1–3):204–211CrossRefGoogle Scholar
  164. 164.
    Lucca D, Seo Y, Rhorer R (1994) Energy dissipation and tool-workpiece contact in ultra-precision machining. Tribol Trans 37(3):651–655CrossRefGoogle Scholar
  165. 165.
    Qiu Z, Fang FZ, Ding L, Zhao Q (2011) Investigation of diamond cutting tool lapping system based on on-machine image measurement. Int J Adv Manuf Technol 56(1):79–86CrossRefGoogle Scholar
  166. 166.
    Liu K (2002) Ductile cutting for rapid prototyping of tungsten carbide tools. A thesis for a doctorate, National University of Singapore, SingaporeGoogle Scholar
  167. 167.
    Lucca D, Seo Y, Rhorer R, Donaldson R (1994) Aspects of surface generation in orthogonal ultraprecision machining. CIRP Ann Manuf Technol 43(1):43–46CrossRefGoogle Scholar
  168. 168.
    Yan J, Zhao H, Kuriyagawa T (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond Sci Technol 24(7):075018CrossRefGoogle Scholar
  169. 169.
    M’saoubi R, Chandrasekaran H (2004) Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel. Int J Mach Tools Manuf 44(2):213–224CrossRefGoogle Scholar
  170. 170.
    Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81CrossRefGoogle Scholar
  171. 171.
    Leung T, Lee W, Lu X (1998) Diamond turning of silicon substrates in ductile-regime. J Mater Process Technol 73(1):42–48CrossRefGoogle Scholar
  172. 172.
    Akash A and Aghara V Tool geometry & it’s signature [online]. [Retrieved: 21/5/2016]. https://www.slideshare.net/akashambaliya/tool-geometry-its-signature
  173. 173.
    Nakasuji T, Kodera S, Hara S, Matsunaga H, Ikawa N, Shimada S (1990) Diamond turning of brittle materials for optical components. CIRP Ann Manuf Technol 39(1):89–92CrossRefGoogle Scholar
  174. 174.
    Komanduri R, Chandrasekaran N, Raff LM (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219(1):84–97CrossRefGoogle Scholar
  175. 175.
    Komanduri R, Chandrasekaran N, Raff LM (1999) Some aspects of machining with negative-rake tools simulating grinding: a molecular dynamics simulation approach. Philos Magazine B 79(7):955–968CrossRefGoogle Scholar
  176. 176.
    Yan J, Syoji K and Kuriyagawa T (1999) Effects of cutting edge geometry on brittle-ductile transition in silicon machining. In Proceedings of the 9th international conference on precision engineering (ICPE), Osaka, pp 92–7Google Scholar
  177. 177.
    Patten JA, Gao W (2001) Extreme negative rake angle technique for single point diamond nano-cutting of silicon. Precis Eng 25(2):165–167CrossRefGoogle Scholar
  178. 178.
    Liu K, Li XP, Rahman M, Neo KS, Liu XD (2006) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol 32(7–8):631–637CrossRefGoogle Scholar
  179. 179.
    Jenei IZ (2012) Scanning electron microscopy (SEM) analysis of tribofilms enhanced by fullerene-like nanoparticles. Department of Physics, Stockholm University, StockholmGoogle Scholar
  180. 180.
    Goel S, Luo X, Reuben RL (2013) Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol Int 57:272–281CrossRefGoogle Scholar
  181. 181.
    Li X, He T, Rahman M (2005) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 259(7–12):1207–1214CrossRefGoogle Scholar
  182. 182.
    Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polvani RS (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng 18(1):4–19CrossRefGoogle Scholar
  183. 183.
    Durazo-Cardenas I, Shore P, Luo X, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262(3–4):340–349CrossRefGoogle Scholar
  184. 184.
    Zhang S, To, S, Zhang G (2017) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88(1–4):613–641CrossRefGoogle Scholar
  185. 185.
    Yan J, Zhang Z, Kuriyagawa T (2009) Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tools Manuf 49(5):366–374CrossRefGoogle Scholar
  186. 186.
    Born DK, Goodman W (2001) An empirical survey on the influence of machining parameters on tool wear in diamond turning of large single-crystal silicon optics. Precis Eng 25(4):247–257CrossRefGoogle Scholar
  187. 187.
    Field J (2012) The mechanical and strength properties of diamond. Rep Prog Phys 75(12):126505CrossRefGoogle Scholar
  188. 188.
    Yamaguchi T, Higuchi M, Shimada S, Tanaka H, Obata K (2006) Scientific screening of raw diamond for an ultraprecision cutting tool with high durability. CIRP Ann Manuf Technol 55(1):71–74CrossRefGoogle Scholar
  189. 189.
    Jackson MJ, Whitfield MD, Robinson GM, Cabral G, Reis P, Titus E, Madaleno JC, Davim JP, Gracio J, Ahmed W, Sein H (2009) Machining brittle materials using nanostructured diamond tools. In: Jackson MJ, Morrel JS (eds) Machining with nanomaterials. Springer, London, pp 169–198Google Scholar
  190. 190.
    Mukaida M, Yan J (2017) Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tools Manuf 115:2–14CrossRefGoogle Scholar
  191. 191.
    Lauro C, Brandão L, Baldo D, Reis R, Davim J (2014) Monitoring and processing signal applied in machining processes—a review. Measurement 58:73–86CrossRefGoogle Scholar
  192. 192.
    Thamizhmanii S and Hasan S (2009) Investigation of surface roughness and flank wear by CBN and PCBN tools on hard Cr-Mo steel. In Proceedings of the World Congress on Engineering, pp 5Google Scholar
  193. 193.
    ANSI/ASME (1985) Tool-life testing with single-point turning tools B94. 55M. American National Standard, New YorkGoogle Scholar
  194. 194.
    Shi M (2010) Thermo-chemical tool wear in orthogonal diamond cutting steel and stainless steelGoogle Scholar
  195. 195.
    Asai S, Taguchi Y, Horio K, Kasai T, Kobayashi A (1990) Measuring the very small cutting-edge radius for a diamond tool using a new kind of SEM having two detectors. CIRP Ann Manuf Technol 39(1):85–88CrossRefGoogle Scholar
  196. 196.
    Lane B (2010) Development of predictive models for abrasive and chemical wear of diamond toolsGoogle Scholar
  197. 197.
    Van Bouwelen F, Field J, Brown L (2003) Electron microscopy analysis of debris produced during diamond polishing. Philos Mag 83(7):839–855CrossRefGoogle Scholar
  198. 198.
    Sandak J, Palubicki B and Kowaluk G (2011) Measurement of the cutting tool edge recession with optical methods. In Proceedings of the 20th International Wood Machining Seminar, pp 6Google Scholar
  199. 199.
    Chon KS, Takahashi H, Namba Y (2014) Wear inspection of a single-crystal diamond tool used in electroless nickel turning. Opt Eng 53(3):034102–034102CrossRefGoogle Scholar
  200. 200.
    Yingfei G, Jiuhua X, Hui Y (2010) Diamond tools wear and their applicability when ultra-precision turning of SiC p/2009Al matrix composite. Wear 269(11):699–708CrossRefGoogle Scholar
  201. 201.
    Feng Z, Field J (1992) The friction and wear of diamond sliding on diamond. J Phys D Appl Phys 25(1A):A33CrossRefGoogle Scholar
  202. 202.
    Couto M, Van Enckevort W, Seal M (1994) Diamond polishing mechanisms: an investigation by scanning tunnelling microscopy. Philos Mag B 69(4):621–641CrossRefGoogle Scholar
  203. 203.
    Zareena A, Veldhuis S (2012) Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J Mater Process Technol 212(3):560–570CrossRefGoogle Scholar
  204. 204.
    Zong W, Li Z, Sun T, Li D, Cheng K (2010) Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment. J Mater Process Technol 210(6):858–867CrossRefGoogle Scholar
  205. 205.
    Jia P, Zhou M (2012) Tool wear and its effect on surface roughness in diamond cutting of glass soda-lime. Chin J Mech Eng 25(6):1224–1230CrossRefGoogle Scholar
  206. 206.
    Couto M, van Enckvort W, Seal M (1994) On the mechanism of diamond polishing in the soft directions. J Hard Mater 5(2):31–47Google Scholar
  207. 207.
    Asai S, Kobayashi A (1990) Observations of chip producing behaviour in ultra-precision diamond machining and study on mirror-like surface generating mechanism. Precis Eng 12(3):137–143CrossRefGoogle Scholar
  208. 208.
    Cheng C, Wang Z, Hung W, Bukkapatnam ST, Komanduri R (2015) Ultra-precision machining process dynamics and surface quality monitoring. Procedia Manuf 1:607–618CrossRefGoogle Scholar
  209. 209.
    Antić A, Šimunović G, Šarić T, Milošević M, and Ficko M (2013) A model of tool wear monitoring system for turning. Tehnicki vjesnik/Technical Gazette 20(2)Google Scholar
  210. 210.
    Klancnik S, Balic J, Cus F (2010) Intelligent prediction of milling strategy using neural networks. Control Cybern 39(1):9–24Google Scholar
  211. 211.
    Yan J, Syoji K, Tamaki JI (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255(7):1380–1387CrossRefGoogle Scholar
  212. 212.
    Stepien K, Janecki D, Adamczak S (2011) Investigating the influence of selected factors on results of V-block cylindricity measurements. Measurement 44(4):767–777CrossRefGoogle Scholar
  213. 213.
    Svalina I, Sabo K, Šimunović G (2011) Machined surface quality prediction models based on moving least squares and moving least absolute deviations methods. Int J Adv Manuf Technol 57(9–12):1099–1106CrossRefGoogle Scholar
  214. 214.
    Choudhury S, Kishore K (2000) Tool wear measurement in turning using force ratio. Int J Mach Tools Manuf 40(6):899–909CrossRefGoogle Scholar
  215. 215.
    Sadilek M, Dubský J, Sadílková Z, Poruba Z (2016) Cutting forces during turning with variable depth of cut. Perspect Sci 7:357–363CrossRefGoogle Scholar
  216. 216.
    Aco A, Petar BP, Milan Z, Borut K, Janko H (2012) The influence of tool wear on the chip-forming mechanism and tool vibrations. Mater Tehnol 46(3):279–285Google Scholar
  217. 217.
    Čep R, Janásek A, Martinický B and Sadílek M (2011) Cutting tool life tests of ceramic inserts for car engine sleevesGoogle Scholar
  218. 218.
    Čep R, Janásek A, Čepová L, Petrů J, Hlavatý I, Car Z, et al (2013) Experimental testing of exchangeable cutting inserts cutting abilityGoogle Scholar
  219. 219.
    Neslušan M, Mrkvica I, Čep R, Kozak D and Konderla R (2011) Deformations after heat treatment and their influence on cutting processGoogle Scholar
  220. 220.
    Gao W, Hocken RJ, Patten JA, Lovingood J (2000) Force measurement in a nanomachining instrument. Rev Sci Instrum 71(11):4325–4329CrossRefGoogle Scholar
  221. 221.
    Li X (2002) A brief review: acoustic emission method for tool wear monitoring during turning. Int J Mach Tools Manuf 42(2):157–165CrossRefGoogle Scholar
  222. 222.
    Abou-El-Hossein K, Olufayo O, Mkoko Z (2013) Performance of diamond inserts in ultra-high precision turning of Cu3Cr3Zr alloy. Wear 302(1):1098–1104CrossRefGoogle Scholar
  223. 223.
    Abou-El-Hossein K, Olufayo O, Mkoko Z (2013) Diamond tool wear during ultra-high precision machining of rapidly solidified aluminium RSA 905. Wear 302(1):1105–1112CrossRefGoogle Scholar
  224. 224.
    Lee DE, Hwang I, Valente CMO, Oliveira JFG, Dornfeld DA (2006) Precision manufacturing process monitoring with acoustic emission. Int J Mach Tool Manu 46(2):176–188CrossRefGoogle Scholar
  225. 225.
    Choi I-H, Kim J-D (1999) Development of monitoring system on the diamond tool wear. Int J Mach Tools Manuf 39(3):505–515CrossRefGoogle Scholar
  226. 226.
    Zhang G, To, S, Xiao G (2014) The relation between chip morphology and tool wear in ultra-precision raster milling. Int J Mach Tools Manuf 80:11–17CrossRefGoogle Scholar
  227. 227.
    Zhu K, San Wong Y, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int J Mach Tools Manuf 49(7):537–553CrossRefGoogle Scholar
  228. 228.
    Karayel D (2009) Prediction and control of surface roughness in CNC lathe using artificial neural network. J Mater Process Technol 209(7):3125–3137CrossRefGoogle Scholar
  229. 229.
    Asiltürk İ, Çunkaş M (2011) Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst Appl 38(5):5826–5832CrossRefGoogle Scholar
  230. 230.
    Scheffer C (2006) Monitoring of tool wear in turning operations using vibration measurementsGoogle Scholar
  231. 231.
    Pastewka L, Moser S, Gumbsch P, Moseler M (2011) Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 10(1):34–38CrossRefGoogle Scholar
  232. 232.
    Wang Y, Suzuki N, Shamoto E, Zhao Q (2011) Investigation of tool wear suppression in ultraprecision diamond machining of die steel. Precis Eng 35(4):677–685CrossRefGoogle Scholar
  233. 233.
    Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusa U (2003) The contact mechanics of fractal surfaces. Nat Mater 2(4):233–236CrossRefGoogle Scholar
  234. 234.
    Oomen J, Eisses J (1992) Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precis Eng 14(4):206–218CrossRefGoogle Scholar
  235. 235.
    Ikawa N, Shimada S, Tsuwa H (1982) Microfracture of diamond as fine tool material. CIRP Ann Manuf Technol 31(1):71–74CrossRefGoogle Scholar
  236. 236.
    Hurt H and Decker D (1984) Tribological considerations of the diamond single-point tool. In 28th Annual Technical Symposium, pp 126–131Google Scholar
  237. 237.
    Khurshudov AG, Kato K, Koide H (1997) Wear of the AFM diamond tip sliding against silicon. Wear 203:22–27CrossRefGoogle Scholar
  238. 238.
    Wilks J (1980) Performance of diamonds as cutting tools for precision machining. Precis Eng 2(2):57–72CrossRefGoogle Scholar
  239. 239.
    Fung K, Tang C, Cheung C (2017) Molecular dynamics analysis of the effect of surface flaws of diamond tools on tool wear in nanometric cutting. Comput Mater Sci 133:60–70CrossRefGoogle Scholar
  240. 240.
    Sharma VS, Dogra M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tools Manuf 49(6):435–453CrossRefGoogle Scholar
  241. 241.
    Stephenson DJ (2006) Surface integrity control during the precision machining of brittle materials. Adv Technol Mater Mater Process J 8(1):13Google Scholar
  242. 242.
    Tong Z, Liang Y, Yang X, Luo X (2014) Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools. Int J Adv Manuf Technol 74(9–12):1709–1718CrossRefGoogle Scholar
  243. 243.
    Cheng K, Luo X, Ward R, Holt R (2003) Modeling and simulation of the tool wear in nanometric cutting. Wear 255(7):1427–1432CrossRefGoogle Scholar
  244. 244.
    Singh K, Vaishya RO, Singh H, Mishra V, Ramagopal S (2013) Investigation of tool life & surface roughness during single point diamond turning of silicon. Int J Sci Res 2(6):265–267Google Scholar
  245. 245.
    Kramar D, Sredanović B, Globočki-Lakić G, and Kopač J (2012) Contribution to universal Machinability definition. J Prod Eng 15(2)Google Scholar
  246. 246.
    Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann, OxfordGoogle Scholar
  247. 247.
    Evans C, Bryan J (1991) Cryogenic diamond turning of stainless steel. CIRP Ann Manuf Technol 40(1):571–575CrossRefGoogle Scholar
  248. 248.
    Kaynak Y, Lu T, Jawahir I (2014) Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Mach Sci Technol 18(2):149–198CrossRefGoogle Scholar
  249. 249.
    Dhananchezian M, Kumar MP (2011) Cryogenic turning of the Ti–6Al–4V alloy with modified cutting tool inserts. Cryogenics 51(1):34–40CrossRefGoogle Scholar
  250. 250.
    Oppenkowski A, Weber S, Theisen W (2010) Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J Mater Process Technol 210(14):1949–1955CrossRefGoogle Scholar
  251. 251.
    Navas VG, Fernández D, Sandá A, Sanz C, Suzon S, Mendiola TFD (2014) Surface integrity of AISI 4150 (50CrMo4) steel turned with different types of cooling-lubrication. Procedia CIRP 13:97–102CrossRefGoogle Scholar
  252. 252.
    Yuan SM, Yan LT, Liu WD, Liu Q (2011) Effects of cooling air temperature on cryogenic machining of Ti–6Al–4V alloy. J Mater Process Technol 211(3):356–362CrossRefGoogle Scholar
  253. 253.
    Singh AP and Singh ER (2016) In metal turning, effect of tool rake angles and lubricants on cutting tool life and surface finish: a reviewGoogle Scholar
  254. 254.
    Branislav S, Gordana GL and Kramar D (2015) New trends in cutting technologies: application of high pressure jet assisted machining. Presented at the 14 International Conference on Tribology (SERBIATRIB ’15), Belgrade, SerbiaGoogle Scholar
  255. 255.
    Sredanovic B, Globocki-Lakic G, Cica D, Kramar D (2013) Influence of different cooling and lubrication techniques on material machinability in machining. Strojniški vestnik-J Mech Eng 59(12):748–754CrossRefGoogle Scholar
  256. 256.
    Chargin D (1998) Cutting fluid study for single crystal silicon. Lawrence Livermore National Lab., CA (United States)Google Scholar
  257. 257.
    Rentsch R (1999) Influence of crystal orientation on the nanometric cutting process. In Proceedings of the First International Euspen ConferenceGoogle Scholar
  258. 258.
    Yan J, Zhang Z, Kuriyagawa T (2011) Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. IJAT 5(3):307–312CrossRefGoogle Scholar
  259. 259.
    Yan J, Zhang Z, Kuriyagawa T (2010) Tool wear control in diamond turning of high-strength mold materials by means of tool swinging. CIRP Ann Manuf Technol 59(1):109–112CrossRefGoogle Scholar
  260. 260.
    Khamel S, Ouelaa N, Bouacha K (2012) Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool. J Mech Sci Technol 26(11):3605–3616CrossRefGoogle Scholar
  261. 261.
    Sharma K, Mahto D and Sen S (2016) In metal turning, effect of various parameters on cutting tool: a reviewGoogle Scholar
  262. 262.
    Thornton A, Wilks J (1978) Clean surface reactions between diamond and steel. Nature 274(5673):792–793CrossRefGoogle Scholar
  263. 263.
    Komanduri R, Raff L (2001) A review on the molecular dynamics simulation of machining at the atomic scale. Proc Inst Mech Eng B J Eng Manuf 215(12):1639–1672CrossRefGoogle Scholar
  264. 264.
    Grzenda M, Bustillo A (2013) The evolutionary development of roughness prediction models. Appl Soft Comput 13(5):2913–2922CrossRefGoogle Scholar
  265. 265.
    Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280CrossRefGoogle Scholar
  266. 266.
    Wang S (2011) Modelling and optimization of cutting strategy and surface generation in ultra-precision raster milling. The Hong Kong Polytechnic University, Hong KongGoogle Scholar
  267. 267.
    Mohanty S (2014) Modelling of hard turning processGoogle Scholar
  268. 268.
    Stephenson DA, Agapiou JS (2005) Metal cutting theory and practice, vol. 68. CRC press, Boca RatonGoogle Scholar
  269. 269.
    Lucca D, Brinksmeier E, Goch G (1998) Progress in assessing surface and subsurface integrity. CIRP Ann Manuf Technol 47(2):669–693CrossRefGoogle Scholar
  270. 270.
    Wyen C-F, Jaeger D, Wegener K (2012) Influence of cutting edge radius on surface integrity and burr formation in milling titanium. Int J Adv Manuf Technol 67(1–4):589–599Google Scholar
  271. 271.
    Evans CJ, Bryan JB (1999) “Structured”,“textured” or “engineered” surfaces. CIRP Ann Manuf Technol 48(2):541–556CrossRefGoogle Scholar
  272. 272.
    Benardos PG, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43(8):833–844CrossRefGoogle Scholar
  273. 273.
    Lou MS, Chen JC, Li CM (1998) Surface roughness prediction technique for CNC end-milling. J Ind Technol 15(1):1–6Google Scholar
  274. 274.
    Boothroyd G (1988) Fundamentals of metal machining and machine tools vol. 28. CRC Press, Boca RatonGoogle Scholar
  275. 275.
    Hessainia Z, Belbah A, Yallese MA, Mabrouki T, Rigal J-F (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5):1671–1681CrossRefGoogle Scholar
  276. 276.
    Upadhyay V, Jain P, Mehta N (2013) In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals. Measurement 46(1):154–160CrossRefGoogle Scholar
  277. 277.
    Rao KV, Murthy B, Rao NM (2014) Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network. Measurement 51:63–70CrossRefGoogle Scholar
  278. 278.
    Zain AM, Haron H, Sharif S (2010) Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst Appl 37(2):1755–1768CrossRefGoogle Scholar
  279. 279.
    Cheung C, Chan K, Lee W (2003) Surface characterization in ultra-precision machining of al/SiC metal matrix composites using data dependent systems analysis. J Mater Process Technol 140(1):141–146CrossRefGoogle Scholar
  280. 280.
    Ayomoh MK, Abou-El-Hossein KA and Ghobashi SF (2015) Surface roughness prediction using numerical scheme and feedback control. In ASME 2015 International Manufacturing Science and Engineering Conference, pp 1–9Google Scholar
  281. 281.
    Shahabi H, Ratnam M (2016) Simulation and measurement of surface roughness via grey scale image of tool in finish turning. Precis Eng 43:146–153CrossRefGoogle Scholar
  282. 282.
    He C, Zong W, Cao Z, Sun T (2015) Theoretical and empirical coupled modeling on the surface roughness in diamond turning. Mater Des 82:216–222CrossRefGoogle Scholar
  283. 283.
    Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739CrossRefGoogle Scholar
  284. 284.
    Chen J, Zhao Q (2015) A model for predicting surface roughness in single-point diamond turning. Measurement 69:20–30CrossRefGoogle Scholar
  285. 285.
    Kong M, Lee W, Cheung C, To, S (2006) A study of materials swelling and recovery in single-point diamond turning of ductile materials. J Mater Process Technol 180(1):210–215CrossRefGoogle Scholar
  286. 286.
    Zong W, Huang Y, Zhang Y, Sun T (2014) Conservation law of surface roughness in single point diamond turning. Int J Mach Tools Manuf 84:58–63CrossRefGoogle Scholar
  287. 287.
    Sata T, Li M, Takata S, Hiraoka H, Li C, Xing X et al (1985) Analysis of surface roughness generation in turning operation and its applications. CIRP Ann Manuf Technol 34(1):473–476CrossRefGoogle Scholar
  288. 288.
    Hocheng H, Hsieh M (2004) Signal analysis of surface roughness in diamond turning of lens molds. Int J Mach Tools Manuf 44(15):1607–1618CrossRefGoogle Scholar
  289. 289.
    Lee W, Cheung BC (2003) Surface generation in ultra-precision diamond turning: modelling and practices vol. 12. John Wiley & Sons, HobokenGoogle Scholar
  290. 290.
    Sata T (1966) Surface finish in metal cutting. CIRP Ann 12(4):190–197Google Scholar
  291. 291.
    Reddy MR, Murthy LS, Kumar PR, Rao GKM (2012) Comparative study of theoretical and practical surface roughness profiles produced in turning. Int J Adv Eng Technol 3(1):89–99Google Scholar
  292. 292.
    R JB and AR B (2014) Correlation among the cutting parameters, surface roughness and cutting forces in turning process by experimental studies. Presented at the 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), IIT Guwahati, Assam, IndiaGoogle Scholar
  293. 293.
    Dogra M, Sharma V and Dureja J (2011) Effect of tool geometry variation on finish turning—a review. J Eng Sci Technol Rev 4(1)Google Scholar
  294. 294.
    Cheung CB (2000) Modelling and simulation of nano-surface generation in ultra-precision machining. PhD Thesis, Manufacturing Engineering, The Hong Kong Polytechnic UniversityGoogle Scholar
  295. 295.
    Jasinevicius RG, Duduch JG, Porto AJV, Purquério BM (1999) Critical aspects on the behavior of material from the mechanical tool-workpiece interaction in single point diamond turning. J Braz Soc Mech Sci 21(3):509–518CrossRefGoogle Scholar
  296. 296.
    Zhang S, To, S, Wang H (2013) A theoretical and experimental investigation into five-DOF dynamic characteristics of an aerostatic bearing spindle in ultra-precision diamond turning. Int J Mach Tools Manuf 71:1–10CrossRefGoogle Scholar
  297. 297.
    Zhang, X., Woon, K., and Rahman, M., "11.09 diamond turning," 2014;Google Scholar
  298. 298.
    Kandananond K (2009) Characterization of FDB sleeve surface roughness using the Taguchi approach. Eur J Sci Res 33(2):330–337Google Scholar
  299. 299.
    Shore P (1995) Machining of optical surfaces in brittle materials using an ultra-precision machine tool. Cranfield University, CranfieldGoogle Scholar
  300. 300.
    Mishra V, Khatri N, Nand K, Singh K, Sarepaka VR (2015) Experimental investigation on uncontrollable parameters for surface finish during diamond turning. Mater Manuf Process 30(2):232–240CrossRefGoogle Scholar
  301. 301.
    Tauhiduzzaman M, Yip A, Veldhuis S (2015) Form error in diamond turning. Precis Eng 42:22–36CrossRefGoogle Scholar
  302. 302.
    Huang P, Lee W, Chan C (2015) Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning. Int J Mach Tools Manuf 94:48–56CrossRefGoogle Scholar
  303. 303.
    Luo DX (2013) Progress review and future plan for ultra precision machining reserach within the Centre, [Retrieved: 7/12/2017]. https://research.hud.ac.uk/media/universityofhuddersfield/content/documents/research/epsrccimam/05Precisionmachining-XichunLuo.pdf
  304. 304.
    Mohammadi H, Ravindra D, Kode SK, Patten JA (2015) Experimental work on micro laser-assisted diamond turning of silicon (111). J Manuf Process 19:125–128CrossRefGoogle Scholar
  305. 305.
    Ravindra D, Ghantasala MK, and Patten J (2012) Effect of applied load, cutting speed and laser power on the material deformation and removal of semiconductors. In Transactions of the North American Manufacturing Research Institution of SME, pp 544–550Google Scholar
  306. 306.
    Ravindra D and Patten J (2011) Ductile regime material removal of silicon carbide (SiC). In Nova Science Publishers, Inc.Google Scholar
  307. 307.
    Yuan J, Lyu B, Hang W, Deng Q (2017) Review on the progress of ultra-precision machining technologies. Front Mech Eng:1–23Google Scholar
  308. 308.
    Suresh PVS, Rao PV, Deshmukh SG (May 2002) A genetic algorithmic approach for optimization of surface roughness prediction model. Int J Mach Tool Manu 42(6):675–680CrossRefGoogle Scholar
  309. 309.
    Puttick K, Whitmore L, Zhdan P, Gee A, Chao C (1995) Energy scaling transitions in machining of silicon by diamond. Tribol Int 28(6):349–355CrossRefGoogle Scholar
  310. 310.
    Zhang S, To, S, Zhang G, Zhu Z (2015) A review of machine-tool vibration and its influence upon surface generation in ultra-precision machining. Int J Mach Tools Manuf 91:34–42CrossRefGoogle Scholar
  311. 311.
    S RM, Vipin (2014) Measuring effect of machining parameters on surface roughness with turning process—literature survey. Int J Adv Res Innov 2(1):313–318Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Lukman N. Abdulkadir
    • 1
  • Khaled Abou-El-Hossein
    • 1
  • Abubakar I. Jumare
    • 1
  • Peter B. Odedeyi
    • 1
  • Muhammad M. Liman
    • 1
  • Tirimisiyu A. Olaniyan
    • 1
  1. 1.Precision Engineering LaboratoryNelson Mandela UniversityPort ElizabethSouth Africa

Personalised recommendations