Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Indexing and retrieval using case-based reasoning in special purpose machine designs

  • 131 Accesses

  • 2 Citations


Research on computer-aided design for machine tools has been in the interest of many researchers for a long time and generated several new methods for different engineering applications. This paper introduces a case-based reasoning (CBR) method combined with SolidWorks application programming interface (API) for special purpose machines (SPMs). It presents an integrated system with focusing on the indexing and retrieval process for the design cases. An indexing mechanism was developed for SPMs, and two retrieval stages were applied to retrieve the optimum case. An illustrative example is included to demonstrate the proposed method and how this method combined with SolidWorks API will accelerate the design process for SPMs.

This is a preview of subscription content, log in to check access.


  1. 1.

    Suhner (2014) Automation expert. Suhner. http://www.suhner-automation-expert.com/site/index.cfm/id_art/7137/vsprache/EN/. Accessed 21 Dec 2015

  2. 2.

    Farhan UH, Tolouei-Rad M, Osseiran A (2016) Use of AHP in decision-making for machine tool configurations. J Manuf Technol Manag 27(6):874–888. doi:10.1108/JMTM-02-2016-0028

  3. 3.

    Krishnamoorthy CS, Rajeev S (1996) Artificial intelligence and expert systems for engineers. CRC Press, New York

  4. 4.

    Tor SB, Britton GA, Zhang WY (2003) Indexing and retrieval in metal stamping die design using case-based reasoning. J Comput Inf Sci Eng 3(4):353–362. doi:10.1115/1.1630339

  5. 5.

    Heragu SS, Kusiak A (1987) Analysis of expert systems in manufacturing design. IEEE Transactions on Systems, Man, and Cybernetics 17(6):898–912. doi:10.1109/TSMC.1987.6499302

  6. 6.

    Reed DA (1990) Expert systems in wind engineering. J Wind Eng Ind Aerodyn 33(3):487–494. doi:10.1016/0167-6105(90)90003-U

  7. 7.

    Duan Y, Edwards JS, Xu MX (2005) Web-based expert systems: benefits and challenges. Information & Management 42(6):799–811. doi:10.1016/j.im.2004.08.005

  8. 8.

    Angeli C (2008) Online expert systems for fault diagnosis in technical processes. Expert Syst 25(2):115–132. doi:10.1111/j.1468-0394.2008.00442.x

  9. 9.

    Pratihar DK (2015) Expert systems in manufacturing processes using soft computing. Int J Adv Manuf Technol 81(5):887–896. doi:10.1007/s00170-015-7285-x

  10. 10.

    Turban E, Aronson JE, Liang T-P (2005) Decision support systems and intelligent systems. 7th ed. edn. Pearson/Prentice Hall, Upper Saddle River, NJ

  11. 11.

    Mok CK, Hua M, Wong SY (2008) A hybrid case-based reasoning CAD system for injection mould design. Int J Prod Res 46(14):3783–3800. doi:10.1080/00207540601103100

  12. 12.

    Kwong CK (2001) A case-based system for process design of injection moulding. Int J Comput Appl Technol 14(1–3):40–50. doi:10.1504/IJCAT.2001.000259

  13. 13.

    Qin X, Regli WC (2003) A study in applying case-based reasoning to engineering design: mechanical bearing design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(3):235–252. doi:10.1017/S0890060403173064

  14. 14.

    Zdrahal Z, Motta E (1996) Case-based problem solving methods for parametric design tasks. In: Smith I, Faltings B (eds) Advances in case-based reasoning: Third European Workshop EWCBR-96 Lausanne, Switzerland, November 14–16, 1996 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 473–486. doi:10.1007/BFb0020631

  15. 15.

    Féret MP, Glasgow JI (1997) Combining case-based and model-based reasoning for the diagnosis of complex devices. Appl Intell 7(1):57–78. doi:10.1023/a:1008232704692

  16. 16.

    Vukelic D, Zuperl U, Hodolic J (2009) Complex system for fixture selection, modification, and design. Int J Adv Manuf Technol 45(7):731–748. doi:10.1007/s00170-009-2014-y

  17. 17.

    Gaoliang P, Guangfeng C, Xinhua L (2010) Using CBR to develop a VR-based integrated system for machining fixture design. Assem Autom 30(3):228–239. doi:10.1108/01445151011061127

  18. 18.

    Toussaint J, Cheng K (2006) Web-based CBR (case-based reasoning) as a tool with the application to tooling selection. Int J Adv Manuf Technol 29(1):24–34. doi:10.1007/s00170-004-2501-0

  19. 19.

    Qi J, Hu J, Peng Y (2012) A new adaptation method based on adaptability under k-nearest neighbors for case adaptation in case-based design. Expert Syst Appl 39(7):6485–6502. doi:10.1016/j.eswa.2011.12.055

  20. 20.

    Rodger JA, George JA (2017) Triple bottom line accounting for optimizing natural gas sustainability: a statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications technology. J Clean Prod 142(Part 4):1931–1949. doi:10.1016/j.jclepro.2016.11.089

  21. 21.

    Hashemi H, Shaharoun AM, Sudin I (2014) A case-based reasoning approach for design of machining fixture. Int J Adv Manuf Technol 74(1):113–124. doi:10.1007/s00170-014-5930-4

  22. 22.

    Varshavskii PR, Eremeev AP (2010) Modeling of case-based reasoning in intelligent decision support systems. Sci Tech Inf Process 37(5):336–345. doi:10.3103/s0147688210050096

  23. 23.

    Liao TW, Zhang Z, Mount CR (1998) Similarity measures for retrieval in case-based reasoning systems. Appl Artif Intell 12(4):267–288. doi:10.1080/088395198117730

  24. 24.

    Maher ML, Pu P (2014) Issues and applications of case-based reasoning to design. Taylor & Francis, New York

  25. 25.

    Macconnell WR (2016) A classification system to describe workpieces: definitions. Elsevier Science, Oxford

  26. 26.

    Hunt JE, Cooke DE, Holstein H (1995) Case memory and retrieval based on the immune system. In: Case-based reasoning research and development: first International Conference, ICCBR-95 Sesimbra, Portugal, October 23–26, 1995 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 205–216. doi:10.1007/3-540-60598-3_19

  27. 27.

    Maher ML, Balachandran MB, Zhang DM (2014) Case-based reasoning in design. Taylor & Francis, New York

  28. 28.

    Anthony D (2011) AutoDrill. AD. http://www.drill-hq.com/2011/11/hardness-scale-for-various-materials/. Accessed 1 July 2016

Download references

Author information

Correspondence to Uday Farhan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farhan, U., Tolouei-Rad, M. & Osseiran, A. Indexing and retrieval using case-based reasoning in special purpose machine designs. Int J Adv Manuf Technol 92, 2689–2703 (2017). https://doi.org/10.1007/s00170-017-0274-5

Download citation


  • Case-based reasoning
  • Special purpose machines
  • Indexing and retrieval
  • Layout design