Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-sensor process analysis and performance characterisation in CNC turning—a cyber physical system approach


High accuracy manufacturing requires the utilisation of advanced signal processing and analytics to monitor, manage, and control production processes. These systems vary in size, scope, and complexity and have traditionally required the skill of multi-disciplinary individuals, for end-to-end application. Current research trends in digital manufacturing aim to remove this complexity through interoperability solutions encapsulated in cyber physical systems. These systems provide a platform for real-time heterogeneous data acquisition, analysis, and distribution. The focus of this research is to demonstrate the application of a cyber physical process monitoring system within an industrial case study. Specifically, a multi-scalable signal processing and analytic system is developed, for both user-driven and semi-autonomous production decision support in CNC turning machining.

This is a preview of subscription content, log in to check access.


  1. 1.

    Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann - Manuf Technol 59:717–739

  2. 2.

    Juneja BL, Seth N (2003) Fundamentals of metal cutting and machine tools. New Age International, 2003, India

  3. 3.

    Saravanan R, Asokan P, Sachithanandam M (2001) Comparative analysis of conventional and non-conventional optimisation techniques for CNC turning process. Int J Adv Manuf Technol 17:471–476. doi:10.1007/s001700170146

  4. 4.

    Wang C, Cheng K, Nelson N et al (2015) Cutting force–based analysis and correlative observations on the tool wear in diamond turning of single-crystal silicon. Proc Inst Mech Eng Part B J Eng Manuf 229:1867–1873. doi:10.1177/0954405414543316

  5. 5.

    Choi D, Kwon WT, Chu CN (1999) Real-time monitoring of tool fracture in turning using sensor fusion. Int J Adv Manuf Technol 15:305–310. doi:10.1007/s001700050071

  6. 6.

    Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61:27–47. doi:10.1016/j.ijmachtools.2012.05.007

  7. 7.

    Abouelatta OB, Mádl J (2001) Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. In: J. Mater. Process. Technol. pp 269–277

  8. 8.

    Oborski P (2014) Developments in integration of advanced monitoring systems. Int J Adv Manuf Technol 75:1613–1632. doi:10.1007/s00170-014-6123-x

  9. 9.

    Jantunen E (2002) A summary of methods applied to tool condition monitoring in drilling. Int J Mach Tools Manuf 42:997–1010. doi:10.1016/S0890-6955(02)00040-8

  10. 10.

    Rehorn AG, Jiang J, Orban PE (2005) State-of-the-art methods and results in tool condition monitoring: a review. Int J Adv Manuf Technol 26:693–710. doi:10.1007/s00170-004-2038-2

  11. 11.

    Monostori L (2014) Cyber-physical production systems: roots, expectations and R&D challenges. In: Procedia CIRP. pp 9–13

  12. 12.

    Wang L, Törngren M, Onori M Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst. doi: 10.1016/j.jmsy.2015.04.008

  13. 13.

    Morgan J, O’Donnell GE (2016) Cyber physical process monitoring systems. J. Intell. Manuf.

  14. 14.

    Morgan J, O’Donnell GE (2014) The cyber physical implementation of cloud manufacturing monitoring systems. 9th CIRP Conf. Intell. Comput. Manuf. Eng.

  15. 15.

    Morgan J, O’Donnell GE (2014) A service oriented reconfigurable process monitoring system—enabling cyber physical systems. J Mach Eng 14:116–129

  16. 16.

    Xiao C, Ding H, Cheng K, Chen S (2015) Design of an innovative smart turning tool with application to real-time cutting force measurement. Proc Inst Mech Eng Part B J Eng Manuf 229:563–568. doi:10.1177/0954405414530907

  17. 17.

    Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51:363–376. doi:10.1016/j.ijmachtools.2011.01.001

  18. 18.

    Kamble PD, Waghmare AC, Askhedkar RD, Sahare SB (2015) Multi objective optimization of turning AISI 4340 steel considering spindle vibration using Taguchi- fuzzy inference system. Mater Today Proc 2:3318–3326. doi:10.1016/j.matpr.2015.07.155

  19. 19.

    Tangjitsitcharoen S (2009) In-process monitoring and detection of chip formation and chatter for CNC turning. J Mater Process Technol 209:4682–4688. doi:10.1016/j.jmatprotec.2008.10.054

  20. 20.

    Morgan J, Trostel J, O’Donnell GE, Eisenblätter G (2012) Machine tool process monitoring and machine condition monitoring—examining data acquisition gateways for process adaption. Int Manuf Conf 29:10

  21. 21.

    Petersson BAT (2008) General introduction to vibration. Handb Noise Vib Control:169–179. doi:10.1002/9780470209707.ch11

  22. 22.

    Scheffer C, Girdhar P (2004) Practical machinery vibration analysis and predictive maintenance. Elsevier, Oxford

  23. 23.

    Herlufsen H, Gade S, Zaveri HK (2008) Analyzers and Signal Generators. In: Handb. Noise Vib. Control. pp 470–485

  24. 24.

    Ahmad R, Kamaruddin S (2012) An overview of time-based and condition-based maintenance in industrial application. Comput &amp. Ind Eng 63:135–149. doi:10.1016/j.cie.2012.02.002

  25. 25.

    Trout CM (2010) Essentials of electric motors and controls. Jones and Bartlett Publishers, Massachusetts

  26. 26.

    Pople S (1999) Electromagnetic induction. In: Adv. Phys. through Diagrams. Oxford Universoty Press, Oxford, pp 78–79

  27. 27.

    International Standards Organization (1993) ISO 3685:1993 Tool-life testing with single-point turning tools.

Download references

Author information

Correspondence to Jeff Morgan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgan, J., O’Donnell, G.E. Multi-sensor process analysis and performance characterisation in CNC turning—a cyber physical system approach. Int J Adv Manuf Technol 92, 855–868 (2017). https://doi.org/10.1007/s00170-017-0113-8

Download citation


  • Process and condition monitoring
  • Cyber physical systems
  • Decision support
  • CNC turning