Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

SMED enhanced with 5-Whys Analysis to improve set-upreduction programs: the SWAN approach

  • 510 Accesses

  • 9 Citations

Abstract

In the present paper, a novel Single-Minute Exchange of Die (SMED) set-up reduction approach, fully integrated with a 5-Whys Analysis, is presented. It permits to highlight not-optimized conditions from the changeover perspective, with the aim of reducing the effort and the cost of the SMED activity. Indeed, all set-up losses are investigated in a structural manner to identify their root causes and all the possible interactions, thus suggesting better—in terms of efficiency—interventions. In this way, the analyst is supported and facilitated during the definition of the actions required to reduce the set-up times. In particular, the implementation of the ‘why-why analysis’ is supported and integrated with (i) a general schematization of the generic workstation and (ii) an operational worksheet that leads the analyst through the investigation of the machine and its set-up process. The proposed approach is applied to a real industrial context, and the outcomes of such application are presented in the provided case study.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Shingo S (1985) A revolution in manufacturing: the SMED system. Productivity Press, Portland

  2. 2.

    Das B, Venkatadri U, Pandey P (2014) Applying lean manufacturing system to improving productivity of airconditioning coil manufacturing. Int J Adv Manuf Technol 71(1–4):307–323. doi:10.1007/s00170-013-5407-x

  3. 3.

    Faccio M (2013) Setup time reduction: SMED-balancing integrated model for manufacturing systems with automated transfer. International Journal of Engineering and Technology 5(5):4075–4084. http://www.enggjournals.com/ijet/docs/IJET13-05-05-259.pdf

  4. 4.

    Sayem A, Islam MA, Khan MMA (2014) Productivity enhancement through reduction of changeover time by implementing SMED technique—in furniture industry. Int J Ind Syst Eng 17(1):15–33. doi:10.1504/IJISE.2014.060820

  5. 5.

    Stadnicka D (2015) Setup analysis: combining SMED with other tools. Management and Production Engineering Review 6(1):36–50. doi:10.1515/mper-2015-0006

  6. 6.

    Singh BJ, Khanduja D (2010) SMED: for quick changeovers in foundry SMEs. Int J Product Perform Manag 59(1):98–116. doi:10.1108/17410401011006130

  7. 7.

    Hirano H (2009) JIT implementation manual—the complete guide to just-In-time manufacturing: volume 4—leveling—changeover and quality assurance. CRC Press, Boca Raton

  8. 8.

    Henry JR (2012) Achieving lean changeover: putting SMED to work. CRC Press, Boca Raton

  9. 9.

    Van Goubergen D, Van Landeghem H (2002) Rules for integrating fast changeover capabilities into new equipment design. Robot Comput Integr Manuf 18(3–4):205–214. doi:10.1016/S0736-5845(02)00011-X

  10. 10.

    Kušar J, Berlec T, Žefran F, Starbek M (2010) Reduction of machine setup time. Strojniski Vestnik/Journal of Mechanical Engineering 56(12):833–845. http://en.sv-jme.eu/archive/sv-jme-volume-2010/sv-jme-56-12-2010/

  11. 11.

    Bevilacqua M, Ciarapica FE, De Sanctis I, Mazzuto G, Paciarotti C (2015) A changeover time reduction through an integration of lean practices: a case study from pharmaceutical sector. Assem Autom 35(1):22–34. doi:10.1108/AA-05-2014-035

  12. 12.

    Mileham AR, Culley SJ, Owen GW, Newnes LB, Giess MD, Bramley AN (2004) The impact of run-up in ensuring rapid changeover. CIRP Ann Manuf Technol 53(1):407–410. doi:10.1016/S0007-8506(07)60727-6

  13. 13.

    McIntosh R, Owen G, Culley S, Mileham T (2007) Changeover improvement: reinterpreting Shingo’s SMED methodology. IEEE Trans Eng Manag 54(1):98–111. doi:10.1109/TEM.2006.889070

  14. 14.

    Cakmakci M, Kemal Karasu M, Çakiroglu MB, Ayva E, Ortabas-Demirel N (2012) Faster changeovers via improved SMED empowered by Taguchi/case study on injection molding production. Quality - Access to Success 13(SUPPL.5):73–78. doi:10.1016/j.measurement.2013.09.035

  15. 15.

    Ferradás PG, Salonitis K (2013) Improving changeover time: a tailored SMED approach for welding cells. Procedia CIRP 7:598–603. doi:10.1016/j.procir.2013.06.039

  16. 16.

    Almomani MA, Aladeemy M, Abdelhadi A, Mumani A (2013) A proposed approach for setup time reduction through integrating conventional SMED method with multiple criteria decision-making techniques. Comput Ind Eng 66(2):461–469. doi:10.1016/j.cie.2013.07.011

  17. 17.

    Braglia M, Frosolini M, Gallo M (2016) Enhancing SMED: changeover out of machine evaluation technique to implement the duplication strategy. Prod Plan Control 27(4):328–342. doi:10.1080/09537287.2015.1126370

  18. 18.

    Morales Méndez JD, Silva Rodríguez R (2016) Set-up reduction in an interconnection axle manufacturing cell using SMED. Int J Adv Manuf Technol 84(9–12):1907–1916. doi:10.1007/s00170-015-7845-0

  19. 19.

    Reik MP, McIntosh RI, Culley SJ, Mileham AR, Owen GW (2006) A formal design for changeover methodology. Part 1: theory and background. Journal of Engineering Manufacture-Proceedings of the Institution of Mechanical Engineers Part B 220(8):1225–1235. doi:10.1243/09544054JEM527

  20. 20.

    Singh BJ, Khanduja D (2011) Design for set-ups: a step towards quick changeovers in foundries. International Journal of Sustain design 1(4):402–422. doi:10.1504/IJSDES.2011.043293

  21. 21.

    Cakmakci M (2009) Process improvement: performance analysis of the setup time reduction-SMED in the automobile industry. Int J Adv Manuf Technol 41(1–2):168–179. doi:10.1007/s00170-008-1434-4

  22. 22.

    Doggett AM (2004) A statistical comparison of three root cause tools. J Ind Technol 20(2):1–9

  23. 23.

    Murugaiah U, Benjamin SJ, Marathamuthu MS, Muthaiyah S (2010) Scrap loss reduction using the 5-whys analysis. International Journal of Quality and Reliability Management 27(5):527–540. doi:10.1108/02656711011043517

  24. 24.

    Benjamin SJ, Marathamuthu MS, Murugaiah U (2015) The use of 5-WHYs technique to eliminate OEE’s speed loss in a manufacturing firm. J Qual Maint Eng 21(4):419–435. doi:10.1108/JQME-09-2013-0062

  25. 25.

    Low SN, Kamaruddin S, Azid IA (2015) Categorisation of process improvement models from a conceptual perspective. International journal of process management and. Benchmarking 5(1):113–132. doi:10.1504/IJPMB.2015.066014

  26. 26.

    Ding SH, Muhammad NA, Zulkurnaini NH, Khaider AN, Kamaruddin S (2013) Production system improvement by integration of FMEA with 5-WHYS analysis. Adv Mater Res 748:1203–1207. doi:10.4028/www.scientific.net/AMR.748.1203

  27. 27.

    Ohno T (1988) Toyota production system: beyond large-scale production. Productivity Press, Cambridge, MA

  28. 28.

    Heuvel LNV, Lorenzo DK, Jackson LO, Hanson WE, Rooney JJ, Walker DA (2008) Root cause analysis handbook: a guide to efficient and effective incident investigation, 3rd edn. Rothstein Associates, Houston, TX

  29. 29.

    Barsalou MA (2014) Root cause analysis: a step-by-step guide to using the right tool at the right time. CRC Press, Boca Raton

Download references

Author information

Correspondence to Mosè Gallo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braglia, M., Frosolini, M. & Gallo, M. SMED enhanced with 5-Whys Analysis to improve set-upreduction programs: the SWAN approach. Int J Adv Manuf Technol 90, 1845–1855 (2017). https://doi.org/10.1007/s00170-016-9477-4

Download citation

Keywords

  • Lean production
  • SMED programs
  • Changeover reduction
  • 5-Whys analysis
  • Root cause analysis