Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Plasma beam radius compensation-integrated torch path planning for CNC pipe hole cutting with welding groove


In order to achieve accurate pipe hole cutting applied to joint preparations for joining pipe with set-in branch, this paper presents a novel method of torch path planning which integrates the plasma beam radius compensation. The geometrical models of intersecting pipes and sing-V welding groove cover the most complex intersecting mode and provide adjustable groove angle configuration. They construct the foundation of the path planning method and generate the theoretical cutting line. Based on the principle of three-dimensional tool radius compensation, a plasma beam radius compensation interface is designed for dynamic compensation value, which can cope with variable plasma kerf width caused by large fluctuant bevel angle. The correlative algorithm modules are connected by homogeneous matrices, with which the torch’s position and orientation are described as well. The experiment validates the feasibility of the torch path planning method and demonstrates the corresponding accuracy improvement.

This is a preview of subscription content, log in to check access.


  1. 1.

    Yin YH, Xie JY (2011) Reconfigurable manufacturing execution system for pipe cutting. Enterp Inf Syst 5(3):287–299. doi:10.1080/17517575.2011.579177

  2. 2.

    Qin YF, Xiao JL, Wang G (2011) The open architecture CNC system based on 6-axis flame pipe cutting machine. Proc 3rd Int Conf Measur Technol Mechatron Autom, ICMTMA 3:878–881. doi:10.1109/ICMTMA.2011.792

  3. 3.

    Borboni A, Bussola R, Faglia R, Magnani PL, Menegolo A (2008) Movement optimization of a redundant serial robot for high-quality pipe cutting. J Mech Des 130(8):0823011–0823016. doi:10.1115/1.2918907

  4. 4.

    BS 2971:1991 Specification for Class II arc welding of carbon steel pipework for carrying fluids

  5. 5.

    Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys 39(22):423–438. doi:10.1088/0022-3727/39/22/R01

  6. 6.

    Liu X, Huang S, Chen FZ, Yang XL, Wu LB, Xu WJ (2015) Research on the cold plasma jet assisted cutting of Ti6Al4V. Int J Adv Manuf Technol 77(9-12):2125–2133. doi:10.1007/s00170-014-6607-8

  7. 7.

    Maity KP, Bagal DK (2015) Effect of process parameters on cut quality of stainless steel of plasma arc cutting using hybrid approach. Int J Adv Manuf Technol 78(1-4):161–175. doi:10.1007/s00170-014-6552-6

  8. 8.

    Oysu C (2007) Automation of welding face shaping process for tubular structures. Ind Robot Int J 34(1):32–38. doi:10.1108/01439910710718423

  9. 9.

    Chen YQ, Bai X (2010) Mathematical model for NC cutting saddle type of welding groove with edge. Trans China Weld Instit 31(7):91–94

  10. 10.

    Cai J, Ding ZX, Zhang Y, Liu M (2015) Trajectory planning and simulation for intersecting line cutting of theindustry robot. Proc 11th World Congr Intell Control Autom, WCICA 2014 (3):63–68. doi:10.1109/WCICA.2014.7052688

  11. 11.

    Chen YD, Wang TM (2013) Three-dimensional tool radius compensation for multi-axis peripheral milling. Chin J Mech Eng 26(3):547–554. doi:10.3901/CJME.2013.03.547

  12. 12.

    Lin PD, Liao TT (2009) An effective-wire-radius compensation scheme for enhancing the precision of wire-cut electrical discharge machines. Int J Adv Manuf Technol 40(3-4):324–331. doi:10.1007/s00170-007-1333-0

  13. 13.

    Craig JJ (2003) Introduction to Robotics: mechanics and control, 3rd edn. Prentice Hall, London

  14. 14.

    Yu JP, Shi P (2015) Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans Ind Electron 62(9):5962–5970. doi:10.1109/TIE.2015.2418317

  15. 15.

    ISO 9692-1:2013 (2013) Welding and allied processes—types of joint preparation—part 1: manual metal arc welding, gas-shielded metal arc welding, gas welding, TIG welding and beam welding of steels

  16. 16.

    Shi L, Tian XC (2014) Automation of main pipe-rotating welding scheme for intersecting pipes. Int J Adv Manuf Technol 77(5-8):955–964. doi:10.1007/s00170-014-6526-8

  17. 17.

    Ramakrishnan S, Shrinet V, Polivka FB, Kearney TN, Koltun P (2000) Influence of gas composition on plasma arc cutting of mild steel. J Phys D Appl Phys 33 (18):2288–2299. doi:10.1088/0022-3727/33/18/313

  18. 18.

    Gonzalez-Aguilar J, Sanjurjo CP, Rodriguez-Yunta A, Calderon MAG (1999) A theoretical study of a cutting air plasma torch. IEEE Trans Plasma Sci 27(1):264–271. doi:10.1109/27.763132

  19. 19.

    ISO 9013:2002 (2002) Thermal cutting—Classification of thermal cuts—Geometrical product specification and quality tolerances

  20. 20.

    Salonitis K, Vatousianos S (2012) Experimental investigation of the plasma arc cutting process. 45th CIRP Conf Manuf Syst, CMS 3(1):287–292. doi:10.1016/j.procir.2012.07.050

  21. 21.

    Messay T, Ordonez R, Marcil E (2016) Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots. Robot Comput Integr Manuf 37:33–48. 10.1016/j.rcim.2015.06.003

  22. 22.

    Hypertherm Inc (2015) Powermax65 & Powermax85 Service Manual.

  23. 23.

    GB/T 4380-2004 (2004) Assessment of departure from roundness—two-and three-point methods

Download references

Author information

Correspondence to Xincheng Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Song, R. & Tian, X. Plasma beam radius compensation-integrated torch path planning for CNC pipe hole cutting with welding groove. Int J Adv Manuf Technol 88, 1971–1981 (2017).

Download citation


  • Pipe hole cutting
  • Path planning
  • Plasma cutting
  • Radius compensation