Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: characterisation and modelling

Abstract

In the paper, the fabrication method and characteristics of porous coatings on Ti-Nb-Zr-Sn alloy biomaterial obtained by plasma electrolytic oxidation (PEO) are presented. The PEO process was performed at two voltages of 180 ± 10 and 450 ± 10 V, respectively, during 3 min of treatment in the electrolyte based on orthophosphoric acid with copper II nitrate of initial temperature of 20 ± 2 °C. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and 2D roughness measurements were performed on the samples. The study results indicate an enrichment of the porous layer (18 and 21 μm thick, for 180 and 450 V, respectively) in two elements, P and Cu, coming from the electrolyte used. The analysis performed based on the SEM, EDS, GDOES and XPS results obtained shows that after the PEO treatment, three sub-layers of the coating can be distinguished and separated and two models are proposed to fit these findings. It was found that both the contents of copper and phosphorus in the surface layer as well as the thickness of porous coating can be controlled to some extent by the PEO parameters. The greatest achievement of the presented work is the lack of toxic tin inside the top surface layer of the porous coatings as well as the enrichment of the coatings with copper ions up to 2.3 at%. In authors’ opinion, the finding of the transition layer enriched within hydrogen and nitrogen ions can be interpreted by the presence of molecules of phosphoric acid and copper nitrate occurring in that sub-layer. This is a great advancement in the field of identification of the layers obtained by PEO.

References

  1. 1.

    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122(2–3):73–93. doi:10.1016/S0257-8972(99)00441-7

  2. 2.

    Simka W, Sadowski A, Warczak M, Iwaniak A, Dercz G, Michalska J, Maciej A (2011) Characterization of passive films formed on titanium during anodic oxidation. Electrochim Acta 56(27):8962–8968. doi:10.1016/j.electacta.2009.07.010

  3. 3.

    Jin FY, Tong HH, Shen LR, Wang K, Chu PK (2006) Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization. Mater Chem Phys 100(1):31–33. doi:10.1016/j.matchemphys.2005.12.001

  4. 4.

    Simka W, Sowa M, Socha RP, Maciej A, Michalska J (2013) Anodic oxidation of zirconium in silicate solutions. Electrochim Acta 104:518–525. doi:10.1016/j.electacta.2012.10.130

  5. 5.

    Sowa M, Kazek-Kęsik A, Socha RP, Dercz G, Michalska J, Simka W (2013) Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim Acta 144:627–636. doi:10.1016/j.electacta.2013.10.047

  6. 6.

    Simka W, Nawrat G, Chlode J, Maciej A, Winiarski A, Szade J, Radwański K, Gazdowicz J (2011) Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysl Chemiczny 90(1):84–90

  7. 7.

    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (2000) Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf Coat Technol 130(2–3):195–206. doi:10.1016/S0257-8972(00)00719-2

  8. 8.

    Wheeler JM, Collier CA, Paillard JM, Curran JA (2010) Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V. Surf Coat Technol 204(21–22):339–3409. doi:10.1016/j.surfcoat.2010.04.006

  9. 9.

    Yu S, Yu Z, Wang G, Han J, Ma X, Dargusch MS (2011) Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans Nonferrous Metals Soc China 21:573–580. doi:10.1016/S1003-6326(11)60753-X

  10. 10.

    Rokosz K, Hryniewicz T, Raaen S (2015) Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. Int J Adv Manuf Technol. doi:10.1007/s00170-015-8086-y

  11. 11.

    Hryniewicz T (1989) Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali). Monograph no. 26, ed. by Koszalin University of Technology Publishing: 161 pages

  12. 12.

    Hryniewicz T (2007) On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych). Ed. by Koszalin University of Technology Publishing: 155 pages

  13. 13.

    Rokosz K (2012) Electrochemical polishing in the magnetic field (Polerowanie elektrochemiczne w polu magnetycznym). Ed. by Koszalin University of Technology Publishing: 211 pages

  14. 14.

    Hryniewicz T, Rokicki R, Rokosz K (2008) Co-Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments. Surf Coat Technol 62(17–18):3073–3076. doi:10.1016/j.matlet.2008.01.130

  15. 15.

    Hryniewicz T, Rokosz K (2010) Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surf Coat Technol 204(16–17):2583–2592. doi:10.1016/j.surfcoat.2010.02.005

  16. 16.

    Hryniewicz T, Rokicki R, Rokosz K (2007) Magnetoelectropolishing for metal surface modification. Trans Inst Met Finish 85(6):325–332. doi:10.1179/174591907X246537

  17. 17.

    Hryniewicz T, Rokicki R, Rokosz K (2008) Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surf Coat Technol 203(9):1508–1515. doi:10.1016/j.surfcoat.2008.11.028

  18. 18.

    Hryniewicz T, Rokosz K (2010) Polarization characteristics of magnetoelectropolishing stainless steels. Mater Chem Phys 122(1):169–174

  19. 19.

    Rokosz K, Hryniewicz T, Raaen S (2012) Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters. J Iron Steel Res 83(9):910–918

  20. 20.

    Hryniewicz T, Rokosz K (2010) Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Mater Chem Phys 123(1):47–55

  21. 21.

    Hryniewicz T, Rokosz K (2014) Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corros Methods Mater 61(2):57–64

  22. 22.

    Hryniewicz T, Rokosz K, Valiček J, Rokicki R (2012) Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater Lett 83:69–72. doi:10.1016/j.matlet.2012.06.010

  23. 23.

    Hryniewicz T, Rokosz K, Rokicki R, Prima F (2015) Nanoindentation and XPS studies of titanium TNZ alloy after electrochemical polishing in a magnetic field. Materials 8:205–215. doi:10.3390/ma8010205

  24. 24.

    Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S (2015) Comparative XPS analysis of passive layers composition formed on AISI 304L SS after standard and high-current density electropolishing. Surf Interface Anal 47(1):87–92

  25. 25.

    Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S (2015) XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surf Coat Technol 276:516–520. doi:10.1016/j.surfcoat.2015.06.022

  26. 26.

    Rokicki R, Hryniewicz T, Pulletikurthi C, Rokosz K, Munroe N (2015) Towards a better corrosion resistance and biocompatibility improvement of Nitinol medical devices. J Mater Eng Perform 24:1634–1640. doi:10.1007/s11665-015-1429-x

  27. 27.

    Rokosz K, Hryniewicz T (2010) Pitting corrosion resistance of AISI 316L stainless steel in Ringer’s solution after magnetoelectrochemical polishing. Corrosion 66(3):035004

  28. 28.

    Rokosz K, Hryniewicz T (2013) XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing. Int J Mater Res 104(12):1223–1232. doi:10.3139/146.110984

  29. 29.

    Hryniewicz T, Konarski P, Rokosz K, Rokicki R (2011) SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions. Surf Coat Technol 205(17–18):4228–4236. doi:10.1016/j.surfcoat.2011.03.024

  30. 30.

    Hryniewicz T, Rokosz K, Zschommler Sandim HR (2012) SEM/EDX and XPS studies of niobium after electropolishing. Appl Surf Sci 263:357–361. doi:10.1016/j.apsusc.2012.09.060

  31. 31.

    Rokosz K, Hryniewicz T, Raaen S (2014) Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by Gaussian-Lorentzian shape lines. Tehnicki Vjesn-Tech Gaz 21(3):533–538

  32. 32.

    Rokosz K, Hryniewicz T, Raaen S (2015) SEM/EDX, XPS, corrosion and surface roughness characterization of AISI 316L SS after electrochemical treatment in concentrated HNO3. Tehnicki Vjesn-Tech Gaz 22(1):125–131

  33. 33.

    Xiangyu Z, Xiaobo H, Ma Y, Lin N, Ailan F, Bin T (2012) Bactericidal behavior of Cu-containing stainless steel surfaces. Appl Surf Sci 258:10058–10063

  34. 34.

    Xiaohong Y, Xiangyug Z, Haibo W, Linhai T, Yong M, Bin T (2014) Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl Surf Sci 292:944–947. doi:10.1016/j.apsusc.2013.12.083

  35. 35.

    Hempel F, Finke B, Zietz C, Bader R, Weltmann KD, Polak M (2014) Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf Coat Technol 256:52–58. doi:10.1016/j.surfcoat.2014.01.027

  36. 36.

    Zhua W, Zhang Z, Gu B, Sun J, Zhu L (2013) Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation. J Mater Sci Technol 29(3):237–244. doi:10.1016/j.jmst.2012.12

  37. 37.

    Parajulee S, Hayakawa M, Ikezawa S (2009) Adhesion strength of TiN stacked TiO2 film correlated with contact angle, critical load, and XPS spectra. Plasma Fusion Res: Lett 4(055):055-1–055-4. doi:10.1585/pfr.4.055

  38. 38.

    Fernandez AM, Guzman AM, Vera E, Rodriguez Paez JE (2008) Efectos de fotodegradación propiciados por recubrimientos de TiO2 y TiO2 -SiO2 obtenidos por Sol–gel. Bol Soc Esp Cerámica Vidrio V 47(5):259–266

  39. 39.

    Winship KA (1988) Toxicity of tin and its compounds. Adverse Drug React Acute Poisoning Rev 7(1):19–38

  40. 40.

    Rokosz K, Hryniewicz T, Dudek Ł, Matýsek D, Valíček J, Harničarova M (2016) SEM and EDS analysis of surface layers formed on titanium after plasma electrolytic oxidation in H3PO4 with the addition of Cu(NO3)2. J Nanosci Nanotechnol 16:1–4. doi:10.1166/jnn.2016.12558

  41. 41.

    Rokosz K, Hryniewicz T (2016) Plasma electrolytic oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials. World Sci News 35:44–61

  42. 42.

    Casa Software Ltd (2009) CasaXPS: processing software for XPS, AES, SIMS and more. http://www.casaxps.com. (Accessed 26 June 2007)

  43. 43.

    Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. doi:10.1016/j.apsusc.2010.07.086

  44. 44.

    Rodenbücher Ch (2014) Resistive switching phenomena of extended defects in Nb-doped SrTiO3 under influence of external gradients. Forschungszentrum Julich, Dissertation 38 RWTH Aachen University, ISSN 1866–1777, ISBN 978-3-89336-980-5, 79–80

  45. 45.

    Wagner C D, Naumkin A V, Kraut-Vass A, Allison J W, Powell C J, Rumble J R Jr (2003) NIST Standard Reference Database 20, Version 3.4 (2003) http://srdata.nist.gov/xps (Accessed 26 June 2007)

  46. 46.

    Boffa A B (1994) Transition metal oxides deposited on rhodium and platinum: surface chemistry and catalysis, center for advanced materials, Lawrence Berkeley Laboratory, University of California, PhD Thesis, LBL-35954, UC-401

  47. 47.

    Valiček J, Drzik M, Hryniewicz T, Harničarova M, Rokosz K, Kusnerova M, Barcova K, Brazina D (2012) Non-contact method for surface roughness measurement after machining. Meas Sci Rev 12(5):184–88. doi:10.2478/v10048-012-0028-3

  48. 48.

    Kusnerova M, Valicek J, Harničarova M, Hryniewicz T, Rokosz K, Palkova Z, Vaclavik V, Repka M, Bendova M (2013) A proposal for simplifying the method of evaluation of uncertainties in measurement results. Meas Sci Rev 13(1):1–6. doi:10.2478/msr-2013-0007

  49. 49.

    EN ISO 4287:(1999) Geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters. International Organization for Standarization

  50. 50.

    DIN 4768:(1990) Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments; concepts and measuring conditions.

Download references

Author information

Correspondence to Tadeusz Hryniewicz.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rokosz, K., Hryniewicz, T., Raaen, S. et al. Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: characterisation and modelling. Int J Adv Manuf Technol 87, 3497–3512 (2016). https://doi.org/10.1007/s00170-016-8692-3

Download citation

Keywords

  • Plasma electrolytic oxidation (PEO)/micro arc oxidation (MAO)
  • Titanium-niobium-zirconium-tin alloy
  • SEM
  • XPS
  • GDOES
  • Porous coating
  • Copper enrichment