Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Variation propagation modeling for locating datum system design in multi-station assembly processes

Abstract

The locating datum system is an important content to uniform positioning throughout the design, manufacture, assembly, and inspection in dimensional management of sheet metal product. This paper develops a more accurate variation propagation model in multi-station assembly processes using a discrete time nonlinear state-space model to provide a mathematical representation for process-oriented locating datum system design. The proposed model which includes detail design parameters of locating datum system establishes the quantitative relation between Key Control Characteristics (KCCs) and Key Product Characteristics (KPCs) using the motion vector of the component-oriented reference system as a state variable. In addition, the nonlinear accumulated deviation of locating datum (holes and slots) on parts caused by the fixture deviation is considered in the process of modeling for the first time. And the effectiveness of the model is verified through comparison with widely used software, Variation System Analysis (VSA) in a four-station assembly process of a body side inner panel.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ceglarek D, Shi J (1996) Fixture failure diagnosis for autobody assembly using pattern recognition. J Manuf Sci Eng 118(1):55–66

  2. 2.

    El-Haik B (2005) Axiomatic quality: integrating axiomatic design with six-sigma, reliability, and quality engineering. John Wiley & Sons

  3. 3.

    Ceglarek D, Huang W, Zhou S, Ding Y, Kumar R, Zhou Y (2004) Time-based competition in multistage manufacturing: stream-of-variation analysis (SOVA) methodology—review. Int J Flex Manuf Sys 16(1):11–44

  4. 4.

    Franciosa P, Das A, Ceglarek D, Bolognese L, Marine C, Mistry A (2014) Design synthesis methodology for dimensional management of assembly process with compliant non-ideal parts. Proc of Joint Conf on Mechanical, Design Engineering & Advanced Manufacturing ST 1(1):3

  5. 5.

    Shi J (2006) Stream of variation modeling and analysis for multistage manufacturing processes. CRC press

  6. 6.

    Thornton AC (1999) A mathematical framework for the key characteristic process. Res Eng Des 11(3):145–157

  7. 7.

    Ding Y, Ceglarek D, Shi J (2002) Design evaluation of multi-station assembly processes by using state space approach. J Mech Design 124(3):408–418

  8. 8.

    Cai W, Hu SJ, Yuan JX (1996) Deformable sheet metal fixturing: principles, algorithms, and simulations. J Manuf Sci Eng 118(3):318–324

  9. 9.

    Camelio JA, Hu SJ, Ceglarek, DJ et al. (2002) Impact of fixture design sheet metal assembly variation. In ASME 2002 Int Design Eng Tech Conf Comput Inform Eng Conf 133-140

  10. 10.

    Liu YG, Hu SJ (2005) Assembly fixture fault diagnosis using designated component analysis. J Manuf Sci Eng 127(2):358–368

  11. 11.

    Kim P, Ding Y (2004) Optimal design of fixture layout in multistation assembly processes. IEEE T Autom Sci Eng 1(2):133–145

  12. 12.

    Hu SJ, Koren Y (1997) Stream-of-variation theory for automotive body assembly. CIRP Ann- Manuf Techn 46(1):1–6

  13. 13.

    Jin J, Shi J (1999) State space modeling of sheet metal assembly for dimensional control. J Manuf Sci Eng 121(4):756–762

  14. 14.

    Ding Y, Ceglarek D, Shi J et al. (2000) Modeling and diagnosis of multistage manufacturing processes: part I: state space model. In Proc 2000 Japan/USA Sympos Flexible Automation 23–26

  15. 15.

    Kim P, Sun JU (2004) Multi-station fixture layout design using simulated annealing. OMEGA-INT J Manage S 10(2):73–87

  16. 16.

    Li Z, Izquierdo LE, Kokkolaras M, Hu SJ, Papalambros PY (2008) Multiobjective optimization for integrated tolerance allocation and fixture layout design in multistation assembly. J Manuf Sci Eng 130(4):044501

  17. 17.

    Izquierdo LE, Hu SJ, Du H, Jin R, Jee H, Shi J (2009) Robust fixture layout design for a product family assembled in a multistage reconfigurable line. J Manuf Sci Eng 131(4):041008

  18. 18.

    Xie W, Deng Z, Ding B et al. (2014) Fixture layout optimization in multi-station assembly processes using augmented ant colony algorithm. J Manuf Syst

  19. 19.

    Ding Y, Jin J, Ceglarek D, Shi J (2005) Process-oriented tolerancing for multi-station assembly systems. IIE Trans 37(6):493–508

  20. 20.

    Ding Y, Shi J, Ceglarek D (2002) Diagnosability analysis of multi-station manufacturing processes. J Dyn Syst-T ASME 124(1):1–13

  21. 21.

    Ding Y, Kim P, Ceglarek D, Jin J (2003) Optimal sensor distribution for variation diagnosis in multistation assembly processes. IEEE Trans Robot Automat 19(4):543–556

  22. 22.

    Agrawal R, Lawless JF, Mackay RJ (1999) Analysis of variation transmission in manufacturing processes—part II. J Qual Technol 31(2):143

  23. 23.

    Zhou S, Huang Q, Shi J (2003) State space modeling of dimensional variation propagation in multistage machining process using differential motion vectors. IEEE Trans Robot Automat 19(2):296–309

  24. 24.

    Abellán-Nebot JV, Subirón FR, Mira JS (2013) Manufacturing variation models in multi-station machining systems. Int J Adv Manuf Technol 64(1–4):63–83

  25. 25.

    Zhang M, Djurdjanovic D, Ni J (2007) Diagnosibility and sensitivity analysis for multi-station machining processes. Int J Mach Tool Manu 47(3):646–657

  26. 26.

    Du S, Yao X, Huang D, Wang M (2015) Three-dimensional variation propagation modeling for multistage turning process of rotary workpieces. Comput Ind Eng 82:41–53

  27. 27.

    Cai W (2006) Robust pin layout design for sheet-panel locating. Int J Adv Manuf Technol 28(5–6):486–494

  28. 28.

    Tian Z, Lai X, Lin Z (2009) Robust fixture layout design for multi-station sheet metal assembly processes using a genetic algorithm. Int J Prod Res 47(21):6159–6176

  29. 29.

    Li Y, Chen G, Lai X, Jin S, Zheng C (2007) A framework of auto body assembly qualitative simulation system. Int J Adv Manuf Technol 33(11–12):244–1255

  30. 30.

    Haghighi P, Mohan P, Kalish N, Vemulapalli P, Shah JJ, Davidson JK (2015) Toward automatic tolerancing of mechanical assemblies: first-order GD&T schema development and tolerance allocation. J Comput Inf Sci Eng 15(4):041003

Download references

Author information

Correspondence to Xin Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Li, X., Ma, Q. et al. Variation propagation modeling for locating datum system design in multi-station assembly processes. Int J Adv Manuf Technol 86, 1357–1366 (2016). https://doi.org/10.1007/s00170-015-8275-8

Download citation

Keywords

  • Locating datum
  • Dimensional management
  • Variation propagation
  • Multi-station assembly processes
  • Nonlinear state-space model