Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dynamic maintenance plan optimization of fixture components for a multistation autobody assembly process

  • 174 Accesses

  • 1 Citations

Abstract

Process-oriented tolerance design and maintenance policy of the fixture system are major ways to ensure the dimension quality of autobodies. Traditional maintenance policy mostly uses a fixed threshold considering the static nominal process variables, which always lead to excessive or inadequate maintenance of fixtures. Based on the analysis of dynamic information in multistation assembly process, a maintenance policy optimization methodology is proposed to integrate the updated process states and monitored incoming parts’ deviations in the assembly process. In this method, the product quality constraint function considering dynamic fixture component degradation, dimension fluctuations of parts, etc. is constructed firstly, and then, a nonlinear optimization algorithm is used to obtain the optimal maintenance schedule with a minimum maintenance cost. An engine compartment assembly case was used to illustrate the procedure and advantages of the proposed method. At last, the effect of dynamic process variables and incoming parts’ qualities on the maintenance results were examined and discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Huang W, Phoomboplab T, Ceglarek D (2009) Process capability surrogate model-based tolerance synthesis for multi-station manufacturing systems. IIE Trans 41(4):309–322. doi:10.1080/07408170802510408

  2. 2.

    Forouraghi B (2009) Optimal tolerance allocation using a multiobjective particle swarm optimizer. Int J Adv Manuf Technol 44(7–8):710–724. doi:10.1007/s00170-008-1892-8

  3. 3.

    González I, Sánchez I (2013) Optimal centering and tolerance design for correlated variables. Int J Adv Manuf Technol 66(9–12):1499–1510. doi:10.1007/s00170-012-4434-3

  4. 4.

    Saravanan A, Balamurugan C, Sivakumar K, Ramabalan S (2014) Optimal geometric tolerance design framework for rigid parts with assembly function requirements using evolutionary algorithms. Int J Adv Manuf Technol 73(9–12):1219–1236. doi:10.1007/s00170-014-5908-2

  5. 5.

    Singh PK, Jain PK, Jain SC (2004) A genetic algorithm-based solution to optimal tolerance synthesis of mechanical assemblies with alternative manufacturing processes: focus on complex tolerancing problems. Int J Prod Res 42(24):5185–5215. doi:10.1080/00207540410001733931

  6. 6.

    Chen Y, Ding Y, Jin J, Ceglarek D (2006) Integration of process-oriented tolerancing and maintenance planning in design of multistation manufacturing processes. IEEE Trans Autom Sci Eng 3(4):440–453. doi:10.1109/TASE.2006.872105

  7. 7.

    Widyadana GA, Wee HM (2012) An economic production quantity model for deteriorating items with preventive maintenance policy and random machine breakdown. Int J Syst Sci 43(10):1870–1882. doi:10.1080/00207721.2011.555009

  8. 8.

    Zhou J, Djurdjanovic D, Ivy J, Ni J (2007) Integrated reconfiguration and age-based preventive maintenance decision making. IIE Trans 39(12):1085–1102. doi:10.1080/07408170701291779

  9. 9.

    Giurgiutiu V, Zagrai A, Bao JJ, Redmond JM, Roach D, Rackow K (2003) Active sensors for health monitoring of aging aerospace structures. Int J COMADEM 6(1):3–21

  10. 10.

    Lee H-T, Yang D-L, Yang S-J (2013) Multi-machine scheduling with deterioration effects and maintenance activities for minimizing the total earliness and tardiness costs. Int J Adv Manuf Technol 66(1–4):547–554. doi:10.1007/s00170-012-4348-0

  11. 11.

    Mirabedini SN, Iranmanesh H (2014) A scheduling model for serial jobs on parallel machines with different preventive maintenance (PM). Int J Adv Manuf Technol 70(9–12):1579–1589. doi:10.1007/s00170-013-5348-4

  12. 12.

    Jamshidi R, Esfahani MMS (2015) Maintenance policy determination for a complex system consisting of series and cold standby system with multiple levels of maintenance action. Int J Adv Manuf Technol 78(5–8):1337–1346. doi:10.1007/s00170-014-6727-1

  13. 13.

    Tambe PP, Mohite S, Kulkarni MS (2013) Optimisation of opportunistic maintenance of a multi-component system considering the effect of failures on quality and production schedule: a case study. Int J Adv Manuf Technol 69(5–8):1743–1756. doi:10.1007/s00170-013-5122-7

  14. 14.

    Lee BJ, Kang CW, Kim S-J, Bae SJ (2014) Optimal replacement strategy for stochastic deteriorating system with random wear limit under periodic inspections. Int J Adv Manuf Technol 71(1–4):219–231. doi:10.1007/s00170-013-5396-9

  15. 15.

    Medjaher K, Tobon-Mejia DA, Zerhouni N (2012) Remaining useful life estimation of critical components with application to bearings. IEEE Trans Reliab 61(2):292–302. doi:10.1109/TR.2012.2194175

  16. 16.

    Bouvard K, Artus S, Bérenguer C, Cocquempot V (2011) Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles. Reliab Eng Syst Saf 96(6):601–610. doi:10.1016/j.ress.2010.11.009

  17. 17.

    Lee S, Ni J (2013) Joint decision making for maintenance and production scheduling of production systems. Int J Adv Manuf Technol 66(5–8):1135–1146. doi:10.1007/s00170-012-4395-6

  18. 18.

    Liu B, Xu Z, Xie M, Kuo W (2014) A value-based preventive maintenance policy for multi-component system with continuously degrading components. Reliab Eng Syst Saf 132:83–89. doi:10.1016/j.ress.2014.06.012

  19. 19.

    Naderkhani ZGF, Makis V (2015) Optimal condition-based maintenance policy for a partially observable system with two sampling intervals. Int J Adv Manuf Technol 78(5–8):795–805. doi:10.1007/s00170-014-6651-4

  20. 20.

    Ding Y, Jin J et al (2005) Process-oriented tolerancing for multi-station assembly systems. IIE Trans 37(6):493–508. doi:10.1080/07408170490507774

  21. 21.

    Jin J, Chen Y (2001) Quality and reliability information integration for design evaluation of fixture system reliability. Qual Reliab Eng Int 17(5):355–372. doi:10.1002/qre.416

  22. 22.

    Ding Y, Ceglarek D, Shi J (2002) Fault diagnosis of multistage manufacturing processes by using state space approach. J Manuf Sci Eng Trans ASME 124(2):313–322. doi:10.1115/1.1445155

Download references

Author information

Correspondence to Yinhua Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ye, X., Ji, F. et al. Dynamic maintenance plan optimization of fixture components for a multistation autobody assembly process. Int J Adv Manuf Technol 85, 2703–2714 (2016). https://doi.org/10.1007/s00170-015-8134-7

Download citation

Keywords

  • Assembly process
  • Fixture system
  • Condition-based maintenance
  • Dynamic assembly process