Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-objective optimization of rolling schedules on aluminum hot tandem rolling

  • 263 Accesses

  • 10 Citations


In hot strip rolling process, rolling schedule is a key technology which directly influences strip product quality. Rolling schedule optimization is actually a problem of load distribution. To make a better rule of the load distribution of aluminum hot tandem rolling, multi-objective optimization algorithm is used to optimize rolling schedule. Preventing slipping, power margin and minimum energy consumption are selected as the optimization objectives. To make a precision calculation of rolling schedule, an adaptive neural network which is based on classification system is applied to improve the prediction ability for the rolling force, and its on-line training system reduces the prediction errors caused by different rolling conditions. The improved differential evolution algorithm is used to search the Pareto front, and it obtains a good approximation of the Pareto-front and decreases computation time. Load distribution strategies focused on different objectives are generated from the Pareto front to meet the requirements of industrial spots. The experiment result shows the algorithm covers the front quickly and distributes well. Comparing with the original schedule, the proposed method reduces the probability of slippage and energy consumption.

This is a preview of subscription content, log in to check access.


  1. 1.

    Papanagnou C I, Halikias G D (2011) Simulation and modelling methods in aluminium rolling industry. Int J Adv Manuf Technol 53:993–1018. doi:10.1007/s00170-010-2880-3

  2. 2.

    Che H J, Han X Y, Yang J M (2010) Optimization of schedule with multi-objective for tandem cold rolling mill based on iaga//Mechanic Automation and Control Engineering (MACE). Int Conf IEEE 2010:3503–3506. doi:10.1109/MACE.2010.5536742

  3. 3.

    Bai Z H, Lian J C, Wang J F (2003) Screw-down schedule optimization for preventing slippage on cold tandem mill. Iron and Steel 10–13 (in chinese). doi:10.13228/j.boyuan.issn0449-749x.2003.10.014

  4. 4.

    Yang J M, Zhang Q, Che H J (2010) Multi-objective optimization for tandem cold rolling schedule. J Iron Steel Res Int 17:34–39. doi:10.1016/S1006-706X(10)60167-7

  5. 5.

    Wang D D, Tieu A K, D’Alessio G (2005) Computational intelligence-based process optimization for tandem cold rolling. Mater Manuf Process 20:479–496. doi:10.1081/AMP-200053535

  6. 6.

    Coello C A, Becerra R L (2009) Evolutionary multiobjective optimization in materials science and engineering. Mater Manuf Process 24:119–129. doi:10.1080/10426910802609110

  7. 7.

    Li W, Liu X, Guo Z (2012) Multi-objective optimization for draft scheduling of hot strip mill. J Cent South Univ 19:3069–3078. doi:10.1007/s11771-012-1380-z

  8. 8.

    Jia S J, Li W G, Liu X H, Du B (2013) Multi-objective load distribution optimization for hot strip mills. J Iron Steel Res Int 20:27–61. doi:10.1016/S1006-706X(13)60052-7

  9. 9.

    Larkiola J, Myllykoski P, Nylander J (1996) Prediction of rolling force in cold rolling by using physical models and neural computing. J Mater Process Technol 60:381–386. doi:10.1016/0924-0136(96)02358-8

  10. 10.

    Cho S, Cho Y, Yoon S (1997) Reliable roll force prediction in cold mill using multiple neural networks. IEEE Trans Neural Netw 8:874–882. doi:10.1109/72.595885

  11. 11.

    Poliak E, Shim M, Kim G, Choo W (1998) Application of linear regression analysis in accuracy assessment of rolling force calculations. Met Mater 4:1047–1056. doi:10.1007/BF03025975

  12. 12.

    Son J, Lee D, Kim I, Choi S (2004) A study on genetic algorithm to select architecture of a optimal neural network in the hot rolling process. J Mater Process Technol 153:643–648. doi:10.1016/j.jmatprotec.2004.04.376

  13. 13.

    Dixit U S, Chandra S (2003) A neural network based methodology for the prediction of roll force and roll torque in fuzzy form for cold flat rolling process. Int J Adv Manuf Technol 22:883–889. doi:10.1007/s00170-003-1628-8

  14. 14.

    Son J S, Lee D M, Kim I S, Choi S G (2005) A study on on-line learning neural network for prediction for rolling force in hot-rolling mill. J Mater Process Technol 164:1612–1617. doi:10.1016/j.jmatprotec.2005.01.009

  15. 15.

    Bagheripoor M, Bisadi H (2013) Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process. Appl Math Model 37:4593–4607. doi:10.1016/j.apm.2012.09.070

  16. 16.

    Rath S, Singh A, Bhaskar U, Krishna B (2010) Artificial neural network modeling for prediction of roll force during plate rolling process. Mater Manuf Process 25:149–153. doi:10.1080/10426910903158249

  17. 17.

    Lee D M, Choi S (2004) Application of on-line adaptable neural network for the rolling force set-up of a plate mill. Eng Appl Artif Intel 17:557–565. doi:10.1016/j.engappai.2004.03.008

  18. 18.

    Liu N, Yang H, Li H, Yan S, Zhang H, Tang W (2015) BP artificial neural network modeling for accurate radius prediction and application in incremental in-plane bending. Int J Adv Manuf Technol 59:1065–1072. doi:10.1007/s00170-011-3564-3

  19. 19.

    Zhang Y, Yang J, Jiang H (2012) Machine tool thermal error modeling and prediction by grey neural network. Int J Adv Manuf Technol 59:1065–1072. doi:10.1007/s00170-011-3564-3

  20. 20.

    Takami K M, Mahmoudi J, Dahlquist E, Lindenmo M (2011) Multivariable data analysis of a cold rolling control system to minimise defects. Int J Adv Manuf Technol 54:553–565. doi:10.1007/s00170-010-2946-2

  21. 21.

    Chun J S, Kim M K, Jung H K, Hong S K (1997) Shape optimization of electromagnetic devices using immune algorithm. IEEE Trans Magn 33:1876–1879. doi:10.1109/20.582650

Download references

Author information

Correspondence to Zi-yu Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Yang, J., Zhao, Z. et al. Multi-objective optimization of rolling schedules on aluminum hot tandem rolling. Int J Adv Manuf Technol 85, 85–97 (2016). https://doi.org/10.1007/s00170-015-7909-1

Download citation


  • Multi-objective optimization
  • Hot tandem rolling
  • Neural network
  • Rolling force
  • Aluminum alloys
  • Rolling schedule